Three-dimensional (3D) genome organization is thought to be important for regulation of gene expression. Chromosome conformation capture-based studies have uncovered ensemble organizational principles such as active (A) and inactive (B) compartmentalization. In addition, large inactive regions of the genome associate with the nuclear lamina, the Lamina Associated Domains (LADs). Here we investigate the dynamic relationship between A/B-compartment organization and the 3D organization of LADs. Using refined algorithms to identify active (A) and inactive (B) compartments from Hi-C data and to define LADs from DamID, we confirm that the LADs correspond to the B-compartment. Using specialized chromosome conformation paints, we show that LAD and A/B-compartment organization are dependent upon chromatin state and A-type lamins. By integrating single-cell Hi-C data with live cell imaging and chromosome conformation paints, we demonstrate that self-organization of the B-compartment within a chromosome is an early event post-mitosis and occurs prior to organization of these domains to the nuclear lamina.
Background. Germline mutations in telomerase and other telomere maintenance genes manifest in the premature aging short telomere syndromes. Myelodysplastic syndromes and acute myeloid leukemia (MDS/AML) account for 75% of associated malignancies, but how these cancers overcome the inherited telomere defect is unknown.Methods. We used ultra-deep targeted sequencing to detect somatic reversion mutations in 17 candidate telomere lengthening genes among controls and short telomere syndrome patients with and without MDS/AML and we tested the functional significance of these mutations.Results. While no controls carried somatic mutations in telomere maintenance genes, 29% (16 of 56) of adults with germline telomere maintenance defects carried at least one (P<0.001) and 13% (7 of 56) had 2 or more. In addition to TERT promoter mutations which were present in 19%, we identified POT1 and TERF2IP mutations in 13%. POT1 mutations impaired telomere binding in vitro and some mutations were identical to ones seen in familial melanoma associated with longer telomere length. Exclusively in patients with germline defects in telomerase RNA (TR), we identified somatic mutations in nuclear RNA exosome genes, RBM7, SKIV2L2, and DIS3, where loss-of-function upregulates mature TR levels. Somatic reversion events in six telomererelated genes were more prevalent in patients who were MDS/AML-free (P = 0.02, RR 4.4, 95% CI 1.2-16.7), and no MDS/AML patient had more than one reversion mutation.
Conclusion.Our data identify diverse adaptive somatic mechanisms in the short telomere syndrome; they raise the possibility that their presence alleviates the telomere crisis that promotes transformation to MDS/AML.
Supported by T32CA009071 (P.J.V.), T32GM136577 (E.A.D.), and RO1CA160433 (M.A.) and the Commonwealth Foundation Precision Medicine Project at Johns Hopkins (MA). The Oncology Tissue Services Core is supported by P30CA006973.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.