Debate exists in the automotive community regarding the validity of the pediatric ATD neck response and corresponding neck loads. Previous research has shown that the pediatric ATDs exhibit hyper-flexion and chin-to-chest contact resulting in overestimations of neck loads and neck injury criteria. Our previous work comparing the kinematics of the Hybrid III and Q-series 6 and 10-year-old ATDs to pediatric volunteers in low-speed frontal sled tests revealed decreased ATD cervical and thoracic spine excursions. These kinematic differences may contribute to the overestimation of upper neck loads by the ATD. The current study compared upper neck loads of the Hybrid III and Q-series 6 and 10-year-old ATDs against size-matched male pediatric volunteers in low-speed frontal sled tests. A 3-D near-infrared target tracking system quantified the position of markers on the ATD and pediatric volunteers (head top, nasion, bilateral external auditory meatus). Shear force (F x ), axial force (F z ), bending moment (M y ), and head angular acceleration ([Formula: see text]) were calculated about the upper neck using standard equations of motion. In general, the ATDs underestimated axial force and overestimated bending moment compared to the human volunteers. The Hybrid III 6, Q6, and Q10 exhibited reduced head angular acceleration and modest increases in upper neck shear compared to the pediatric volunteers. The reduction in axial force and bending moment has important implications for neck injury predictions as both are used when calculating N ij . These analyses provide insight into the biofidelity of the pediatric ATD upper neck loads in low-speed crash environments.
In general, the ATDs overestimated lateral excursion in both impact directions, while underestimating forward excursion of the head and neck in oblique impacts compared to the pediatric volunteers. This was primarily due to pendulum-like lateral bending of the entire ATD torso compared to translation of the thorax relative to the abdomen prior to the lateral bending of the upper torso in the volunteers, likely due to the multisegmented spinal column in the volunteers. Additionally, the effect of belt pretightening on occupant kinematics was greater for the ATDs than the volunteers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.