Sensitive and selective detection assays are essential for the accurate measurement of analytes in both clinical and research laboratories. Immunoassays that rely on nonoverlapping antibodies directed against the same target analyte (e.g., sandwich enzyme-linked immunosorbent assays (ELISAs)) are commonly used molecular detection technologies. Use of split enzyme reporters has simplified the workflow for these traditionally complex assays. However, identifying functional antibody pairs for a given target analyte can be cumbersome, as it generally involves generating and screening panels of antibodies conjugated to reporters. Accordingly, we sought a faster and easier reporter conjugation strategy to streamline antibody screening. We describe here the development of such a method that is based on an optimized ternary NanoLuc luciferase. This bioluminescence complementation system is comprised of a reagent-based thermally stable polypeptide (LgTrip) and two small peptide tags (β9 and β10) with lysine-reactive handles for direct conjugation onto antibodies. These reagents enable fast, single-step, wash-free antibody labeling and sensitive functional screening. Simplicity, speed, and utility of the one-pot labeling technology are demonstrated in screening antibody pairs for the analyte interleukin-4. The screen resulted in the rapid development of a sensitive homogeneous immunoassay for this clinically relevant cytokine.
Point-of-care tests are highly valuable in providing fast results for medical decisions for greater flexibility in patient care. Many diagnostic tests, such as ELISAs, that are commonly used within clinical laboratory settings require trained technicians, laborious workflows, and complex instrumentation hindering their translation into point-of-care applications. Herein, we demonstrate the use of a homogeneous, bioluminescent-based, split reporter platform that enables a simple, sensitive, and rapid method for analyte detection in clinical samples. We developed this point-of-care application using an optimized ternary, split-NanoLuc luciferase reporter system that consists of two small reporter peptides added as appendages to analyte-specific affinity reagents. A bright, stable bioluminescent signal is generated as the affinity reagents bind to the analyte, allowing for proximity-induced complementation between the two reporter peptides and the polypeptide protein, in addition to the furimazine substrate. Through lyophilization of the stabilized reporter system with the formulated substrate, we demonstrate a shelf-stable, all-in-one, add-and-read analyte-detection system for use in complex sample matrices at the point-of-care. We highlight the modularity of this platform using two distinct SARS-CoV-2 model systems: SARS-CoV-2 N-antigen detection for active infections and anti-SARS-CoV-2 antibodies for immunity status detection using chemically conjugated or genetically fused affinity reagents, respectively. This technology provides a simple and standardized method to develop rapid, robust, and sensitive analyte-detection assays with flexible assay formatting making this an ideal platform for research, clinical laboratory, as well as point-of-care applications utilizing a simple handheld luminometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.