The spectroscopic characterization of terrestrial exoplanets over a wide spectral range from the near- to the mid-infrared will be made possible for the first time with the JWST. One challenge is that it is not known a priori whether such planets possess optically thick atmospheres or even any atmospheres altogether. However, this challenge also presents an opportunity, the potential to detect the surface of an extrasolar world. This study explores the feasibility of characterizing with the JWST the atmosphere and surface of LHS 3844b, the highest signal-to-noise rocky thermal emission target among planets that are cool enough to have nonmolten surfaces. We model the planetary emission, including the spectral signal of both the atmosphere and surface, and we explore all scenarios that are consistent with the existing Spitzer 4.5 μm measurement of LHS 3844b from Kreidberg et al. In summary, we find a range of plausible surfaces and atmospheres that are within 3σ of the observationless reflective metal-rich, iron-oxidized, and basaltic compositions are allowed, and atmospheres are restricted to a maximum thickness of 1 bar, if near-infrared absorbers at ≳100 ppm are included. We further make predictions on the observability of surfaces and atmospheres and find that a small number (∼3) of eclipse observations should suffice to differentiate between surface and atmospheric features. We also perform a Bayesian retrieval analysis on simulated JWST data and find that the surface signal may make it harder to precisely constrain the abundance of atmospheric species and may falsely induce a weak H2O detection.
Recently, the first JWST measurement of thermal emission from a rocky exoplanet was reported. The inferred dayside brightness temperature of TRAPPIST-1 b at 15 μm is consistent with the planet having no atmosphere and therefore no mechanism by which to circulate heat to its nightside. In this Letter, we compare TRAPPIST-1 b's measured secondary eclipse depth to predictions from a suite of self-consistent radiative-convective equilibrium models in order to quantify the maximum atmospheric thickness consistent with the observation. We find that plausible atmospheres (i.e., those that contain at least 100 ppm CO2) with surface pressures greater than 0.3 bar are ruled out at 3σ, regardless of the choice of background atmosphere, and a Mars-like thin atmosphere with surface pressure 6.5 mbar composed entirely of CO2 is also ruled out at 3σ. Thicker atmospheres of up to 10 bar (100 bar) are consistent with the data at 1σ (3σ) only if the atmosphere lacks any strong absorbers across the mid-IR wavelength range—a scenario that we deem unlikely. We additionally model the emission spectra for bare-rock planets of various compositions. We find that a basaltic, metal-rich, and Fe-oxidized surface best matches the measured eclipse depth to within 1σ, and the best-fit gray albedo is 0.02 ± 0.11. We conclude that planned secondary eclipse observations at 12.8 μm will serve to validate TRAPPIST-1 b's high observed brightness temperature, but are unlikely to further distinguish among the consistent atmospheric and bare-rock scenarios.
The spectroscopic characterization of terrestrial exoplanets will be made possible for the first time with JWST. One challenge to characterizing such planets is that it is not known a priori whether they possess optically thick atmospheres or even any atmospheres altogether. But this challenge also presents an opportunity -the potential to detect the surface of an extrasolar world. This study explores the feasibility of characterizing the atmosphere and surface of a terrestrial exoplanet with JWST, taking LHS 3844b as a test case because it is the highest signal-to-noise rocky thermal emission target among planets that are cool enough to have non-molten surfaces. We model the planetary emission, including the spectral signal of both atmosphere and surface, and we explore all scenarios that are consistent with the existing Spitzer 4.5 µm measurement of LHS 3844b from Kreidberg et al. (2019). In summary, we find a range of plausible surfaces and atmospheres that are within 3 σ of the observation -less reflective metal-rich, iron oxidized and basaltic compositions are allowed, and atmospheres are restricted to a maximum thickness of 1 bar, if near-infrared absorbers at 100 ppm are included. We further make predictions on the observability of surfaces and atmospheres, perform a Bayesian retrieval analysis on simulated JWST data and find that a small number, ∼ 3, of eclipse observations should suffice to differentiate between surface and atmospheric features. However, the surface signal may make it harder to place precise constraints on the abundance of atmospheric species and may even falsely induce a weak H 2 O detection.
We used 22 μm (W4) Wide-field Infrared Survey Explorer (WISE) observations of 4420 asteroids to analyze lightcurves, and determined spin period estimates for 1929 asteroids. We fit second-order Fourier models at a large number of trial frequencies to the W4 data and analyzed the resulting periodograms. We initially excluded rotational frequencies exceeding 7.57 rotations per day (P < 3.17 hr), which are not sampled adequately by WISE, and periods that exceed twice the WISE observation interval, which is typically 36 hr. We found that three solutions accurately capture the vast majority of the rotational frequencies in our sample: the best-fit frequency and its mirrors around 3.78 and 7.57 rotations per day. By comparing our solutions with a high-quality control group of 752 asteroid spin periods, we found that one of our solutions is accurate (within 5%) in 88% of the cases. The best-fit, secondary, and tertiary solutions are accurate in 55%, 27%, and 6% of the cases, respectively. We also observed that suppression of aliased solutions was more effective with nonuniform sampling than with quasi-uniform sampling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.