Background: Tetrahymena thermophila, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly. Highly accurate preliminary annotation of Tetrahymena's coding potential was hindered by the lack of both comparative genomic sequence information from close relatives and significant amounts of cDNA evidence, thus limiting the value of the genomic information and also leaving unanswered certain questions, such as the frequency of alternative splicing.
We report the identification and cloning of a 28-kDa polypeptide (p28) in Tetrahymena macronuclei that shares several features with the well studied heterochromatinassociated protein HP1 from Drosophila. Notably, like HP1, p28 contains both a chromodomain and a chromoshadow domain. p28 also shares features with linker histone H1, and like H1, p28 is multiply phosphorylated, at least in part, by a proline-directed, Cdc2-type kinase. As such, p28 is referred to as Hhp1p (for H1͞HP1-like protein). Hhp1p is missing from transcriptionally silent micronuclei but is enriched in heterochromatin-like chromatin bodies that presumably comprise repressed chromatin in macronuclei. These findings shed light on the evolutionary conserved nature of heterochromatin in organisms ranging from ciliates to humans and provide further evidence that HP1-like proteins are not exclusively associated with permanently silent chromosomal domains. Our data support a view that members of this family also associate with repressed states of euchromatin.
Heterochromatin represents a specialized chromatin environment vital to both the repression and expression of certain eukaryotic genes. One of the best-studied heterochromatin-associated proteins is Drosophila HP1. In this report, we have disrupted all somatic copies of the Tetrahymena HHP1 gene, which encodes an HP1-like protein, Hhp1p, in macronuclei (H. Huang, E. A. Wiley, R. C. Lending, and C. D. Allis, Proc. Natl. Acad. Sci. USA 95:13624-13629, 1998). Unlike the Drosophila HP1 gene, HHP1 is not essential in Tetrahymena spp., and during vegetative growth no clear phenotype is observed in cells lacking Hhp1p (DeltaHHP1). However, during a shift to nongrowth conditions, the survival rate of DeltaHHP1 cells is reduced compared to that of wild-type cells. Upon starvation, Hhp1p becomes hyperphosphorylated concomitant with a reduction in macronuclear volume and an increase in the size of electron-dense chromatin bodies; neither of these morphological changes occurs in the absence of Hhp1p. Activation of two starvation-induced genes (ngoA and CyP) is significantly reduced in DeltaHHP1 cells while, in contrast, the expression of several growth-related or constitutively expressed genes is comparable to that in wild-type cells. These results suggest that Hhp1p functions in the establishment and/or maintenance of a specialized condensed chromatin environment that facilitates the expression of certain genes linked to a starvation-induced response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.