Extracorporeal membrane oxygenation (ECMO) is a life support system that circulates the blood through an oxygenating system to temporarily (days to months) support heart or lung function during cardiopulmonary failure until organ recovery or replacement. Currently, the need for high levels of systemic anticoagulation and the risk for bleeding are main drawbacks of ECMO that can be addressed with a redesigned ECMO system. Our lab has developed an approach using microelectromechanical systems (MEMS) fabrication techniques to create novel gas exchange membranes consisting of a rigid silicon micropore membrane (SμM) support structure bonded to a thin film of gas-permeable polydimethylsiloxane (PDMS). This study details the fabrication process to create silicon membranes with highly uniform micropores that have a high level of pattern fidelity. The oxygen transport across these membranes was tested in a simple water-based bench-top set-up as well in a porcine in vivo model. It was determined that the mass transfer coefficient for the system using SµM-PDMS membranes was 3.03 ± 0.42 mL O min m cm Hg with pure water and 1.71 ± 1.03 mL O min m cm Hg with blood. An analytic model to predict gas transport was developed using data from the bench-top experiments and validated with in vivo testing. This was a proof of concept study showing adequate oxygen transport across a parallel plate SµM-PDMS membrane when used as a membrane oxygenator. This work establishes the tools and the equipoise to develop future generations of silicon micropore membrane oxygenators.
Highly uniform silicon nanopore membranes were developed for applications in implantable bioartificial organs. A robust, readily scalable, non-fouling surface coating is required to enhance silicon nanopore membrane hemocompatibility. However, the coating must be ultrathin to keep the nanopores from occluding. Recently, zwitterionic brush polymers have demonstrated significantly lower fouling under biological conditions. In this study, we explore ultrathin zwitterionic poly(sulfobetaine methacrylate) (pSBMA) surface coating at sub-5 nm thickness. Membrane hydraulic permeability was measured before and after surface modification of silicon nanopore membranes, and pores were found to be patent and in agreement with coating thickness measurements. Coating stability was analyzed under biological shear as well as under blood flow in vitro and in vivo. Following exposure to shear over 24 h, coatings were characterized via X-ray photoelectron spectroscopy, goniometry, and ellipsometry, and found to survive biological shear. In vitro blood experiments with fresh human blood as well as in vivo 7-day and 26-day implants in a porcine model demonstrate minimal platelet adhesion and activation with pSBMA surface modification compared to unmodified silicon exposed to fresh human blood in vitro. These results demonstrate that ultrathin pSBMA surface modification is a viable choice for application in blood contacting implants with critical nanoscale features.
Extreme prematurity, defined as a gestational age of fewer than 28 weeks, is a significant health problem worldwide. It carries a high burden of mortality and morbidity, in large part due to the immaturity of the lungs at this stage of development. The standard of care for these patients includes support with mechanical ventilation, which exacerbates lung pathology. Extracorporeal life support (ECLS), also called artificial placenta technology when applied to extremely preterm (EPT) infants, offers an intriguing solution. ECLS involves providing gas exchange via an extracorporeal device, thereby doing the work of the lungs and allowing them to develop without being subjected to injurious mechanical ventilation. While ECLS has been successfully used in respiratory failure in full‐term neonates, children, and adults, it has not been applied effectively to the EPT patient population. In this review, we discuss the unique aspects of EPT infants and the challenges of applying ECLS to these patients. In addition, we review recent progress in artificial placenta technology development. We then offer analysis on design considerations for successful engineering of a membrane oxygenator for an artificial placenta circuit. Finally, we examine next‐generation oxygenators that might advance the development of artificial placenta devices.
Accurate measurement of intracranial hypertension is crucial for the management of elevated intracranial pressure (ICP). Catheter-based intraventricular ICP measurement is regarded as the gold standard for accurate ICP monitoring. However, this method is invasive, time-limited, and associated with complications. In this paper, we propose an implantable passive sensor that could be used for continuous intraparenchymal and intraventricular ICP monitoring. Moreover, the sensor can be placed simultaneously along with a cerebrospinal fluid shunt system in order to monitor its function. The sensor consists of a flexible coil which is connected to a miniature pressure sensor via an 8-cm long, ultra-thin coaxial cable. An external orthogonal-coil RF probe communicates with the sensor to detect pressure variation. The performance of the sensor was evaluated in an in vitro model for intraparenchymal and intraventricular ICP monitoring. The findings from this study demonstrate proof-of-concept of intraparenchymal and intraventricular ICP measurement using inductive passive pressure sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.