Background: The COVID-19 pandemic caused >1 million infections during January-March 2020. There is an urgent need for reliable antibody detection approaches to support diagnosis, vaccine development, safe release of individuals from quarantine, and population lock-down exit strategies. We set out to evaluate the performance of ELISA and lateral flow immunoassay (LFIA) devices. Methods: We tested plasma for COVID (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) IgM and IgG antibodies by ELISA and using nine different LFIA devices. We used a panel of plasma samples from individuals who have had confirmed COVID infection based on a PCR result (n=40), and pre-pandemic negative control samples banked in the UK prior to December-2019 (n=142). Results: ELISA detected IgM or IgG in 34/40 individuals with a confirmed history of COVID infection (sensitivity 85%, 95%CI 70-94%), vs. 0/50 pre-pandemic controls (specificity 100% [95%CI 93-100%]). IgG levels were detected in 31/31 COVID-positive individuals tested ≥10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but remained above the detection threshold. Point estimates for the sensitivity of LFIA devices ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 93-100% respectively. Within the limits of the study size, the performance of most LFIA devices was similar. Conclusions: Currently available commercial LFIA devices do not perform sufficiently well for individual patient applications. However, ELISA can be calibrated to be specific for detecting and quantifying SARS-CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days following first symptoms.
Background: Reliable point-of-care (POC) diagnostics not requiring laboratory infrastructure could be a game changer in the COVID-19 pandemic, particularly in the Global South. We assessed performance, limit of detection (LOD) and ease-of-use of three antigen-detecting, rapid POC diagnostics (Ag-RDT) for SARS-CoV-2. Methods: This prospective, multi-centre diagnostic accuracy study, recruited participants suspected to have SARS-CoV2 in Germany and UK. Paired nasopharyngeal swabs (NP) or NP and/or oropharyngeal swabs (OP) were collected from participants (one for clinical real-time reverse transcription polymerase chain reaction (RT-PCR) and one for Ag-RDT testing). Performance of each of three Ag-RDTs was compared to RT-PCR overall, and according to predefined subcategories e.g. cycle threshold (CT)-value, days from symptom onset, etc. In addition, limited verification of analytical limit-of-detection (LOD) was determined. To understand the usability of each Ag-RDT a System Usability Scale (SUS) questionnaire and ease-of-use assessment were performed. Results: Between April 17th and August 25th, 2020, 2417 participants were enrolled, with 70 (3.0%) testing positive by RT-PCR. The best-performing test (SD Biosensor, Inc. STANDARD Q) was 76.6% [95% Confidence Interval (CI) 62.8-86.4] sensitive and 99.3% [CI 98.6-99.6] specific. A sub-analysis showed all samples with RT-PCR CT-values <25 were detectable by STANDARD Q. The test was considered easy-to-use (SUS 86/100) and suitable for POC. Bioeasy and Coris showed specificity of 93.1% [CI 91.0%-94.8%] and 95.8% [CI 93.4%-97.4%], respectively, not meeting the predefined target of ≥98%. Conclusion: There is large variability in performance of Ag-RDT tests with one test showing promise. Given the usability at POC, these tests are likely to have impact despite imperfect sensitivity; however further research and modelling are needed.
Objectives AGILE is a Phase Ib/IIa platform for rapidly evaluating COVID-19 treatments. In this trial (NCT04746183) we evaluated the safety and optimal dose of molnupiravir in participants with early symptomatic infection. Methods We undertook a dose-escalating, open-label, randomized-controlled (standard-of-care) Bayesian adaptive Phase I trial at the Royal Liverpool and Broadgreen Clinical Research Facility. Participants (adult outpatients with PCR-confirmed SARS-CoV-2 infection within 5 days of symptom onset) were randomized 2:1 in groups of 6 participants to 300, 600 and 800 mg doses of molnupiravir orally, twice daily for 5 days or control. A dose was judged unsafe if the probability of 30% or greater dose-limiting toxicity (the primary outcome) over controls was 25% or greater. Secondary outcomes included safety, clinical progression, pharmacokinetics and virological responses. Results Of 103 participants screened, 18 participants were enrolled between 17 July and 30 October 2020. Molnupiravir was well tolerated at 300, 600 and 800 mg doses with no serious or severe adverse events. Overall, 4 of 4 (100%), 4 of 4 (100%) and 1 of 4 (25%) of the participants receiving 300, 600 and 800 mg molnupiravir, respectively, and 5 of 6 (83%) controls, had at least one adverse event, all of which were mild (≤grade 2). The probability of ≥30% excess toxicity over controls at 800 mg was estimated at 0.9%. Conclusions Molnupiravir was safe and well tolerated; a dose of 800 mg twice daily for 5 days was recommended for Phase II evaluation.
Background In low-income countries, like Malawi, important public health measures including social distancing or a lockdown, have been challenging to implement owing to socioeconomic constraints, leading to predictions that the COVID-19 pandemic would progress rapidly. However, due to limited capacity to test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, there are no reliable estimates of the true burden of infection and death. We, therefore, conducted a SARS-CoV-2 serosurvey amongst health care workers (HCW) in Blantyre city to estimate the cumulative incidence of SARS-CoV-2 infection in urban Malawi. Methods Five hundred otherwise asymptomatic HCWs were recruited from Blantyre City (Malawi) from 22nd May 2020 to 19th June 2020 and serum samples were collected all participants. A commercial ELISA was used to measure SARS-CoV-2 IgG antibodies in serum. We run local negative samples (2018 - 2019) to verify the specificity of the assay. To estimate the seroprevalence of SARS CoV-2 antibodies, we adjusted the proportion of positive results based on local specificity of the assay. Results Eighty-four participants tested positive for SARS-CoV-2 antibodies. The HCW with a positive SARS-CoV-2 antibody result came from different parts of the city. The adjusted seroprevalence of SARS-CoV-2 antibodies was 12.3% [CI 9.0-15.7]. Using age-stratified infection fatality estimates reported from elsewhere, we found that at the observed adjusted seroprevalence, the number of predicted deaths was 8 times the number of reported deaths. Conclusion The high seroprevalence of SARS-CoV-2 antibodies among HCW and the discrepancy in the predicted versus reported deaths, suggests that there was early exposure but slow progression of COVID-19 epidemic in urban Malawi. This highlights the urgent need for development of locally parameterised mathematical models to more accurately predict the trajectory of the epidemic in sub-Saharan Africa for better evidence-based policy decisions and public health response planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.