eThe total cellular lipids of Porphyromas gingivalis, a known periodontal pathogen, were previously shown to promote dendritic cell activation and inhibition of osteoblasts through engagement of Toll-like receptor 2 (TLR2). The purpose of the present investigation was to fractionate all lipids of P. gingivalis and define which lipid classes account for the TLR2 engagement, based on both in vitro human cell assays and in vivo studies in mice. Specific serine-containing lipids of P. gingivalis, called lipid 654 and lipid 430, were identified in specific high-performance liquid chromatography fractions as the TLR2-activating lipids. The structures of these lipids were defined using tandem mass spectrometry and nuclear magnetic resonance methods. T oll-like receptors (TLRs) represent a diverse family of molecules that play a critical role in activating the innate immune system in response to pathogens (1, 2). Toll-like receptor 2 (TLR2) recognizes diverse molecular structures of microbial cell wall origin, including lipoteichoic acid, lipoproteins, peptidoglycan from Gram-positive bacteria, lipoarabinomannan from mycobacteria, and zymosan from yeast cell walls. TLR2 is reported to be activated by many other microbial products, including phenol-soluble modulins (3) and Porphyromonas gingivalis lipoprotein (4), lipopolysaccharide (LPS) (5-7), and fimbriae (8-10). However, two recent reports have questioned the extent to which lipoprotein, LPS, or fimbriae mediate TLR2 engagement by P. gingivalis (11,12).We previously reported that the total lipid extract of P. gingivalis promotes activation of mouse dendritic cells and inhibits osteoblast-mediated bone deposition through engagement of TLR2 (13,14). These effects were attributed to the dominant phosphorylated dihydroceramide lipids of P. gingivalis, in particular, phosphoethanolamine dihydroceramides. These studies reported engagement of TLR2 only in vitro in mouse cells. Recent reports have demonstrated TLR2-dependent periodontal bone loss in mice following oral infection with P. gingivalis (15,16). Most recently, cell adhesion mediated through the expression of fimbriae by P. gingivalis has been implicated in promoting of TLR2-dependent oral bone loss (17). In contrast, two recent reports indicated that the capacity of fimbriae to engage TLR2 is dependent on the presence of a contaminating factor that is susceptible to hydrolysis by lipoprotein lipase (11,18).In addition to effects on mouse cells, the phosphorylated dihydroceramide lipids of P. gingivalis have been shown to promote proinflammatory responses in human fibroblasts and to cause disruption of human fibroblast adherence/vitality in culture (19). However, it is not clear whether these effects require engagement of TLR2. Since the total lipid extract of P. gingivalis has been shown to activate TLR2 in mice and in mouse cells, the primary purpose of this investigation was to further identify and characterize the specific lipid classes of P. gingivalis that are responsible for engagement of TLR2 and, specifica...
Multiple sclerosis (MS) is an autoimmune disease of unknown etiology. Infectious agents have been suggested to have a role as environmental factors in MS, but this concept remains controversial. Recently, gastrointestinal commensal bacteria have been implicated in the pathogenesis of autoimmune diseases, but mechanisms underlying the relationship of human systemic autoimmunity with the commensal microbiome have yet to be identified. Consistent with the lack of understanding of pathogenic mechanisms and relevant environmental factors in MS, no blood biomarkers have been identified that distinguish MS patients from healthy individuals. We recently identified a unique gastrointestinal and oral bacteria-derived lipodipeptide, Lipid 654, which is produced by commensal bacteria and functions as a human and mouse Toll-like receptor 2 ligand. Using multiple-reaction-monitoring mass spectrometry, a critical approach in targeted lipidomics, we now report that Lipid 654 can be recovered in the serum of healthy individuals. Most interestingly, we find that Lipid 654 is expressed at significantly lower levels in the serum of patients with MS compared with both healthy individuals and patients with Alzheimer's disease. These results thus identify for the first time a potential mechanism relating the gastrointestinal and oral commensal microbiome to a human systemic autoimmune disease. In addition, these results also identify a potential etiologic environmental factor and novel clinically relevant serum biomarker for MS.
BACKGROUND Gut microbial diversity is associated with improved response to immune checkpoint inhibitors (ICI). Based on the known detrimental impact that antibiotics have on microbiome diversity, we hypothesized that antibiotic receipt prior to ICI would be associated with decreased survival. METHODS Patients with stage III and IV melanoma treated with ICI between 2008 and 2019 were selected from an institutional database. A window of antibiotic receipt within 3 months prior to the first infusion of ICI was pre-specified. The primary outcome was overall survival (OS) and secondary outcomes were melanoma-specific mortality and immune-mediated colitis requiring intravenous (IV) steroids. All statistical tests were two-sided. RESULTS There were 568 patients in our database, of which 114 received antibiotics prior to ICI. 35.9% of patients had stage III disease. On multivariable Cox proportional hazards analysis of patients with stage IV disease, the antibiotic-exposed group had statistically significantly worse OS (hazard ratio [HR] 1.81, 95% confidence interval [CI] 1.27-2.57, p<.001). The same effect was observed among antibiotic-exposed patients with stage III disease (HR 2.78, 95% CI 1.31-5.87, p=.007). When limited to only patients who received adjuvant ICI (N = 89), antibiotic-exposed patients also had statistically significantly worse OS (HR 4.84, 95% CI 1.09-21.50, p=.04). The antibiotic group had a greater incidence of colitis (HR 2.14, 95% CI 1.02-4.52, p=.046). CONCLUSION Patients with stage III and IV melanoma exposed to antibiotics prior to ICI had statistically significantly worse OS than unexposed patients. Antibiotic exposure was associated with greater incidence of moderate to severe immune-mediated colitis. Given the large number of antibiotics prescribed annually, physicians should be judicious with their use in cancer populations likely to receive ICI.
Multiple reaction monitoring-MS analysis of lipid extracts from human carotid endarterectomy and carotid artery samples from young individuals consistently demonstrated the presence of bacterial serine dipeptide lipid classes, including Lipid 654, an agonist for human and mouse Toll-like receptor (TLR)2, and Lipid 430, the deacylated product of Lipid 654. The relative levels of Lipid 654 and Lipid 430 were also determined in common oral and intestinal bacteria from the phylum Bacteroidetes and human serum and brain samples from healthy adults. The median Lipid 430/Lipid 654 ratio observed in carotid endarterectomy samples was significantly higher than the median ratio in lipid extracts of common oral and intestinal Bacteroidetes bacteria, and serum and brain samples from healthy subjects. More importantly, the median Lipid 430/Lipid 654 ratio was significantly elevated in carotid endarterectomies when compared with control artery samples. Our results indicate that deacylation of Lipid 654 to Lipid 430 likely occurs in diseased artery walls due to phospholipase A2 enzyme activity. These results suggest that commensal Bacteriodetes bacteria of the gut and the oral cavity may contribute to the pathogenesis of TLR2-dependent atherosclerosis through serine dipeptide lipid deposition and metabolism in artery walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.