Abstract. We present a compilation of radio-echo sounding (RES) measurements of five radar systems (AWI, BAS, CReSIS, INGV and UTIG) around the EPICA Dome C (EDC) drill site, East Antarctica. The aim of our study is to investigate the differences of the various systems in their resolution of internal reflection horizons (IRHs) and bed topography, penetration depth and capacity of imaging the basal layer. We address the questions of the compatibility of existing radar data for common interpretation and the suitability of the individual systems for reconnaissance surveys. We find that the most distinct IRHs and IRH patterns can be identified and transferred between most data sets. Considerable differences between the RES systems exist in range resolution and depiction of the bottom-most region. Considering both aspects, which we judge as crucial factors in the search for old ice, the CReSIS and the UTIG systems are the most suitable ones. In addition to the RES data set comparison we calculate a synthetic radar trace from EDC density and conductivity profiles. We identify 10 common IRHs in the measured RES data and the synthetic trace. We then conduct a sensitivity study for which we remove certain peaks from the input conductivity profile. As a result the respective reflections disappear from the modeled radar trace. In this way, we establish a depth conversion of the measured travel times of the IRHs. Furthermore, we use these sensitivity studies to investigate the cause of observed reflections. The identified IRHs are assigned ages from the EDC's timescale. Due to the isochronous character of these conductivity-caused IRHs, they are a means to extend the Dome C age structure by tracing the IRHs along the RES profiles.
The National Aeronautics and Space Administration (NASA) initiated a program called Operation IceBridge for monitoring critical parts of Greenland and Antarctica with airborne LIDARs until ICESat-II is launched in 2016. We have been operating radar instrumentation on the NASA DC-8 and P-3 aircraft used for LIDAR measurements over Antarctica and Greenland, respectively. The radar package on both aircraft includes a radar depth sounder/imager operating at the center frequency of 195 MHz. During high-altitude missions flown to perform surface-elevation measurements, we also collected radar depth sounder data. We obtained good ice thickness information and mapped internal layers for both thicker and thinner ice. We successfully sounded 3.2-km-thick low-loss ice with a smooth surface and also sounded about 1-km or less thick shallow ice with a moderately rough surface. The successful sounding required processing of data with an algorithm to obtain 56-dB or lower range sidelobes and array processing with a minimum variance distortionless response algorithm to reduce cross-track surface clutter. In this paper, we provide a brief description of the radar system, discuss range-sidelobe reduction and array processing algorithms, and provide sample results to demonstrate the successful sounding of the ice bottom interface from high altitudes over the Antarctic and Greenland ice sheets.Index Terms-High-altitude ice sheet measurements, ice surface clutter reduction, multichannel airborne radar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.