Cannabinoid (CB) receptors are widespread in the nervous system and influence a variety of behaviors. Weakly electric fish have been a useful model system in the study of the neural basis of behavior, but we know nothing of the role played by the CB system. Here, we determine the overall behavioral effect of a nonselective CB receptor agonist, namely Δ9-tetrahydrocannabinol (THC), in the weakly electric fish Apteronotus leptorhynchus. Using various behavioral paradigms involving social stimuli, we show that THC decreases locomotor behavior, as in many species, and influences communication and social behavior. Across the different experiments, we found that the propensity to emit communication signals (chirps) and seek social interactions was affected in a context-dependent manner. We explicitly tested this hypothesis by comparing the behavioral effects of THC injection in fish placed in a novel versus a familiar social and physical environment. THC-injected fish were less likely to chirp than control fish in familiar situations but not in novel ones. The tendency to be in close proximity to other fish was affected only in novel environments, with control fish clustering more than THC-injected ones. By identifying behaviors affected by CB agonists, our study can guide further comparative and neurophysiological studies of the role of the CB system using a weakly electric fish as a model.
Cannabinoid (CB) receptors are widespread in the nervous system and influence a variety of behaviors. Weakly electric fish has been a useful model system in the study of the neural basis of behavior but we know nothing of the role played by the CB system. Here, we determine the overall behavioral effect of a CB receptor agonist (i.e., ∆ 9 -tetrahydrocannabinol, THC) in the weakly electric fish A. leptorhynchus. Using various behavioral paradigms involving social stimuli, we show that THC decreases locomotor behavior as in many species and influences the communication and social behavior. Across the different experiments we found that the propensity to emit communication signals (chirps) and to seek social interactions was affected in a context-dependent manner. We explicitly tested this hypothesis by comparing the behavioral effects of THC injection in fish placed in a novel versus familiar social and physical environments. THC-injected fish were less likely to chirp than control in familiar situation but not in novel ones. The tendency to be in close proximity was affected only in novel environments whith control fish clustering more than THC-injected ones. By identifying behaviors affected by CB agonists, our study can guide further comparative and neurophysiological studies of the role of the CB system using weakly electric fish as a model.
___________________________________________________________________________________
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.