In this paper, we describe how researchers and weather forecasters work together to make satellite sounding data sets more useful in severe weather forecasting applications through participation in National Oceanic and Atmospheric Administration (NOAA)’s Hazardous Weather Testbed (HWT) and JPSS Proving Ground and Risk Reduction (PGRR) program. The HWT provides a forum for collaboration to improve products ahead of widespread operational deployment. We found that the utilization of the NOAA-Unique Combined Atmospheric Processing System (NUCAPS) soundings was improved when the product developer and forecaster directly communicated to overcome misunderstandings and to refine user requirements. Here we share our adaptive strategy for (1) assessing when and where NUCAPS soundings improved operational forecasts by using real, convective case studies and (2) working to increase NUCAPS utilization by improving existing products through direct, face-to-face interaction. Our goal is to discuss the lessons we learned and to share both our successes and challenges working with the weather forecasting community in designing, refining, and promoting novel products. We foresee that our experience in the NUCAPS product development life cycle may be relevant to other communities who can then build on these strategies to transition their products from research to operations (and operations back to research) within the satellite meteorological community.
Red-green-blue (RGB) composite imagery combines information from several spectral channels into one image to aid in the operational analysis of atmospheric processes. However, infrared channels are adversely affected by the limb effect, the result of an increase in optical pathlength of the absorbing atmosphere between the satellite and the earth as viewing zenith angle increases. This study develops a technique to quickly correct for limb effects in both clear and cloudy regions using latitudinally and seasonally varying limb correction coefficients for real-time applications. These limb correction coefficients account for the increase in optical pathlength in order to produce limb-corrected RGB composites. The improved functionality of limbcorrected RGB composites is demonstrated by multiple case studies of Air Mass and Dust RGB composites using Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi-National Polar-Orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) imagery. However, the limb correction can be applied to any polar-orbiting sensor infrared channels, provided the proper limb correction coefficients are calculated. Corrected RGB composites provide multiple advantages over uncorrected RGB composites, including increased confidence in the interpretation of RGB features, improved situational awareness for operational forecasters, and the ability to use RGB composites from multiple sensors jointly to increase the temporal frequency of observations.
At high latitudes in winter, the atmosphere at flight levels used by passenger and cargo aircraft can reach temperatures cold enough to restrict the flow of jet fuel from the fuel tanks to the engine, due either to water freezing in the fuel or the fuel itself freezing. Currently, aviation forecasters rely on a combination of aircraft reports, pilot reports, a sparse network of radiosondes, and global model fieldsfor identifying and characterizing Cold Air Aloft (CAA) events. More atmospheric data are needed to improve forecasts of CAA placement and timing, and satellite observations can help fill the gap. In particular, products derived from the NOAA-Unique Combined Atmospheric Processing System (NUCAPS) can be utilized by National Weather Service (NWS) forecasters to assist in the production of aviation hazard products. NUCAPS combines measurements from infrared and microwave sounding instruments on polar-orbiting satellites to retrieve atmospheric profiles of temperature and moisture in the high latitudes. NWS forecasters have real-time access to NUCAPS soundings via the Advanced Weather Interactive Processing System-II (AWIPS-II). The Joint Polar Satellite System Sounding Applications Initiative created Gridded NUCAPS in order to view soundings as isobaric surfaces or vertical cross sections in AWIPS-II. The Cooperative Institute for Research in the Atmosphere (CIRA) developed a web-based product for displaying satellite-derived CAA information. This paper describes how the AWIPS-II and CIRA displays of satellite sounding observations augment aviation forecasting activities in Alaska using two specific CAA cases from the 2016–2017 and 2017–2018 winter seasons.
The National Aeronautics and Space Administration (NASA) Short-term Prediction Research and Transition Center (SPoRT) has been part of a collaborative effort within the National Oceanic and Atmospheric Administration (NOAA) Joint Polar Satellite System (JPSS) Proving Ground and Risk Reduction (PGRR) Program to develop gridded satellite sounding retrievals for the operational weather forecasting community. The NOAA Unique Combined Atmospheric Processing System (NUCAPS) retrieves vertical profiles of temperature, water vapor, trace gases, and cloud properties derived from infrared and microwave sounder measurements. A new, optimized method for deriving NUCAPS level 2 horizontally and vertically gridded products is described here. This work represents the development of approaches to better synthesize remote sensing observations that ultimately increase the availability and usability of NUCAPS observations. This approach, known as “Gridded NUCAPS”, was developed to more effectively visualize NUCAPS observations to aid in the quick identification of thermodynamic spatial gradients. Gridded NUCAPS development was based on operations-to-research feedback and is now part of the operational National Weather Service display system. In this paper, we discuss how Gridded NUCAPS was designed, how relevant atmospheric fields are derived, its operational application in pre-convective weather forecasting, and several emerging applications that expand the utility of NUCAPS for monitoring phenomena such as fire weather, the Saharan Air Layer, and stratospheric air intrusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.