Rhinovirus (RV), a ssRNA virus of the picornavirus family, is a major cause of the common cold as well as asthma and chronic obstructive pulmonary disease exacerbations. Viral dsRNA produced during replication may be recognized by the host pattern recognition receptors TLR-3, retinoic acid-inducible gene (RIG)-I, and melanoma differentiation-associated gene (MDA)-5. No study has yet identified the receptor required for sensing RV dsRNA. To examine this, BEAS-2B human bronchial epithelial cells were infected with intact RV-1B or replication-deficient UV-irradiated virus, and IFN and IFN-stimulated gene expression was determined by quantitative PCR. The separate requirements of RIG-I, MDA5, and IFN response factor (IRF)-3 were determined using their respective small interfering RNAs (siRNA). The requirement of TLR3 was determined using siRNA against the TLR3 adaptor molecule Toll/IL-1R homologous region-domain-containing adapter-inducing IFN-β (TRIF). Intact RV-1B, but not UV-irradiated RV, induced IRF3 phosphorylation and dimerization, as well as mRNA expression of IFN-β, IFN-λ1, IFN-λ2/3, IRF7, RIG-I, MDA5, 10-kDa IFN-γ-inducible protein/CXCL10, IL-8/CXCL8, and GM-CSF. siRNA against IRF3, MDA5, and TRIF, but not RIG-I, decreased RV-1B-induced expression of IFN-β, IFN-λ1, IFN-λ2/3, IRF7, RIG-I, MDA5, and inflammatory protein-10/CXCL10 but had no effect on IL-8/CXCL8 and GM-CSF. siRNAs against MDA5 and TRIF also reduced IRF3 dimerization. Finally, in primary cells, transfection with MDA5 siRNA significantly reduced IFN expression, as it did in BEAS-2B cells. These results suggest that TLR3 and MDA5, but not RIG-I, are required for maximal sensing of RV dsRNA and that TLR3 and MDA5 signal through a common downstream signaling intermediate, IRF3.
Human rhinovirus is responsible for the majority of virus-induced asthma exacerbations. To determine the immunologic mechanisms underlying rhinovirus-induced asthma exacerbations, we combined mouse models of allergic airways disease and human rhinovirus infection. We inoculated ovalbumin-sensitized and challenged BALB/c mice with rhinovirus serotype 1B, a minor group strain capable of infecting mouse cells. Compared to sham-infected, ovalbumin-treated mice, virus-infected mice showed increased lung infiltration with neutrophils, eosinophils and macrophages, airway cholinergic hyperresponsiveness, and increased lung expression of cytokines including eotaxin-1/CCL11, IL-4, IL-13 and IFN-γ. Administration of anti-eotaxin-1 attenuated rhinovirus-induced airway eosinophilia and responsiveness. Immunohistochemistry showed eotaxin-1 in the lung macrophages of virus-infected, ovalbumin-treated mice, and confocal fluorescence microscopy revealed co-localization of rhinovirus, eotaxin-1 and IL-4 in CD68-positive cells. RV inoculation of lung macrophages from ovalbumin-treated, but not PBS-treated, mice induced expression of eotaxin-1, IL-4, and IL-13 ex vivo. Macrophages from ovalbumin-treated mice showed increased expression of arginase-1, Ym-1, Mgl-2 and IL-10, indicating a shift in macrophage activation status. Depletion of macrophages from ovalbumin-sensitized and -challenged mice reduced eosinophilic inflammation and airway hyperreactivity following RV infection. We conclude that augmented airway eosinophilic inflammation and hyperresponsiveness in RV-infected mice with allergic airways disease is directed in part by eotaxin-1. Airway macrophages from mice with allergic airways disease demonstrate a change in activation state characterized in part by altered eotaxin and IL-4 production in response to RV infection. These data provide a new paradigm to explain RV-induced asthma exacerbations.
Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to viral infection likely represents a coordinated response integrating both antiviral and pro-inflammatory pathways. We examined the airway responses of MDA5- and TLR3-deficient mice to infection with RV1B, a minor group virus which replicates in mouse lungs. MDA5 null mice showed a delayed type I IFN and attenuated type III IFN response to RV1B infection, leading to a transient increase in viral titer. TLR3 null mice showed normal IFN responses and unchanged viral titers. Further, RV-infected MDA5 and TLR3 null mice showed reduced lung inflammatory responses and reduced airways responsiveness. Finally, RV-infected MDA5 null mice with allergic airways disease showed lower viral titers despite deficient IFN responses, and allergic MDA5 and TLR3 null mice each showed decreased RV-induced airway inflammatory and contractile responses. These results suggest that, in the context of RV infection, binding of viral dsRNA to MDA5 and TLR3 initiates pro-inflammatory signaling pathways leading to airways inflammation and hyperresponsiveness.
Recent studies link early rhinovirus (RV) infections to later asthma development. We hypothesized that neonatal RV infection leads to an IL-13-driven asthma-like phenotype in mice. BALB/c mice were inoculated with RV1B or sham on day 7 of life. Viral RNA persisted in the neonatal lung up to 7 days after infection. Within this time frame, IFNs-α, -β and -γ peaked 1 day after infection, whereas IFN-λ levels persisted. Next, we examined mice on day 35 of life, 28 days after initial infection. Compared to sham-treated controls, virus-inoculated mice demonstrated airways hyperresponsiveness. Lungs from RV-infected mice showed increases in several immune cell populations, as well as the percentages of CD4-positive T cells expressing IFN-γ and of NKp46/CD335+, TCR-β+ cells expressing IL-13. Periodic acid-Schiff and immunohistochemical staining revealed mucous cell metaplasia and muc5AC expression in RV1B- but not sham-inoculated lungs. Mucous metaplasia was accompanied by induction of gob-5, MUC5AC, MUC5B and IL-13 mRNA. By comparison, adult mice infected with RV1B showed no change in IL-13 expression, mucus production or airways responsiveness 28 days after infection. Intraperitoneal administration of anti-IL13 neutralizing antibody attenuated RV-induced mucous metaplasia and methacholine responses, and IL-4R null mice failed to show RV-induced mucous metaplasia. Finally, neonatal RV increased the inflammatory response to subsequent allergic sensitization and challenge. We conclude that neonatal RV1B infection leads to persistent airways inflammation, mucous metaplasia and hyperresponsiveness which are mediated, at least in part, by IL-13.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.