Classic features of polycystic ovary syndrome (PCOS) include derangement of metabolic and cardiovascular health, and vascular dysfunction is commonly reported. These comorbidities indicate impaired blood flow; however, other than limited reports of increased plasma viscosity, surprisingly little is known regarding the physical properties of blood in PCOS. We aimed to investigate whether haemorheology was impaired in women with PCOS. We thus measured a comprehensive haemorheological profile, in a case-control design, of lean women with PCOS and age-matched healthy controls. A clinical examination determined similar cardiovascular risk for the two groups. Whole blood and plasma viscosity was measured using a cone-plate viscometer. The magnitude and rate of red blood cell (RBC) aggregation was determined using a light-transmission aggregometer, and the degree of RBC deformability was measured via laser-diffraction ektacytometry. Plasma viscosity was significantly increased in women with PCOS. Blood viscosity was also increased for PCOS at lower-to-moderate shear rates in both native and standardised haematocrit samples. The magnitude of RBC aggregation–a primary determinant of low-shear blood viscosity–was significantly increased in PCOS at native and 0.4 L·L-1 haematocrit. No difference was detected between PCOS and CON groups for RBC deformability measurements. A novel measure indicating the effectiveness of oxygen transport by RBC (i.e., the haematocrit-to-viscosity ratio; HVR) was decreased at all shear rates in women with PCOS. In a group of young and lean women with PCOS with an unremarkable cardiovascular risk profile based on clinical data, significant haemorheological impairment was observed. The degree of haemorheological derangement observed in the present study reflects that of overt chronic disease, and provides an avenue for future therapeutic intervention in PCOS.
The purpose of this study was to determine how severe acute hypoxia alters neural mechanisms during, and following, a sustained fatiguing contraction. Fifteen participants (25 ± 3.2 years, six female) were exposed to a sham condition and a hypoxia condition where they performed a 10 min elbow flexor contraction at 20% of maximal torque. For hypoxia, peripheral blood oxygen saturation (SnormalpO2) was titrated to 80% over a 15 min period and maintained for 2 h. Maximal voluntary contraction torque, EMG root mean square, voluntary activation, rating of perceived muscle fatigue, and corticospinal excitability (motor‐evoked potential) and inhibition (silent period duration) were then assessed before, during and for 6 min after the fatiguing contraction. No hypoxia‐related effects were identified for neuromuscular variables during the fatigue task. However, for recovery, voluntary activation assessed by motor point stimulation of biceps brachii was lower for hypoxia than sham at 4 min (sham: 89% ± 7%; hypoxia: 80% ± 12%; P = 0.023) and 6 min (sham: 90% ± 7%; hypoxia: 78% ± 11%; P = 0.040). Similarly, voluntary activation (P = 0.01) and motor‐evoked potential area (P = 0.002) in response to transcranial magnetic stimulation of the motor cortex were 10% and 11% lower during recovery for hypoxia compared to sham, respectively. Although an SnormalpO2 of 80% did not affect neural activity during the fatiguing task, motor cortical output and corticospinal excitability were reduced during recovery in the hypoxic environment. This was probably due to hypoxia‐related mechanisms involving supraspinal motor circuits. Key points Acute hypoxia has been shown to impair voluntary activation of muscle and alter the excitability of the corticospinal motor pathway during exercise. However, little is known about how hypoxia alters the recovery of the motor system after performing fatiguing exercise. Here we assessed hypoxia‐related responses of motor pathways both during active contractions and during recovery from active contractions, with transcranial magnetic stimulation and motor point stimulation of the biceps brachii. Fatiguing exercise caused reductions in voluntary activation, which was exacerbated during recovery from a 10 min sustained elbow flexion in a hypoxic environment. These results suggest that reductions in blood oxygen concentration impair the ability of motor pathways in the CNS to recover from fatiguing exercise, which is probably due to hypoxia‐induced mechanisms that reduce output from the motor cortex.
By combining TMS and motor nerve stimulation during a low-intensity exercise task, we were able to uncover the contribution that different levels of the CNS have during fatiguing exercise in PwMS. Our findings are novel and revealed that PwMS experienced decreased voluntary drive from the motor cortex during a low-intensity sustained fatiguing task that was associated with heightened levels of performance fatigability.
Breath-hold divers are known to develop cardiac autonomic changes and brady-arrthymias during prolonged breath-holding (BH). The effects of BH-induced hypoxemia were investigated upon both cardiac autonomic status and arrhythmogenesis by comparing breath-hold divers (BHDs) to non-divers (NDs). Eighteen participants (9 BHDs, 9 NDs) performed a maximal voluntary BH with face immersion. BHDs were asked to perform an additional BH at water surface to increase the degree of hypoxemia. Beat-to-beat changes in heart rate (HR), short-term fractal scaling exponent (DFAα1), the number of arrhythmic events [premature ventricular contractions (PVCs), premature atrial contractions (PACs)] and peripheral oxygen saturation (SpO 2 ) were recorded during and immediately following BH. The corrected QT-intervals (QTc) were analyzed pre-and postacute BH. A regression-based model was used to split BH into a normoxic (NX) and a hypoxemic phase (HX). During the HX phase of BH, BHDs showed a progressive decrease in DFAα1 during BH with face immersion (p < 0.01) and BH with whole-body immersion (p < 0.01) whereas NDs did not (p > 0.05). In addition, BHDs had more arrhythmic events during the HX of BH with whole-body immersion when compared to the corresponding NX phase (5.9 ± 6.7 vs 0.4 ± 1.3; p < 0.05; respectively). The number of PVCs was negatively correlated with SpO 2 during BH with whole-body immersion (r = −0.72; p < 0.05). The hypoxemic stage of voluntary BH is concomitant with significant cardiac autonomic changes toward a synergistic sympathetic and parasympathetic stimulation. Co-activation led ultimately to increased bradycardic response and cardiac electrophysiological disturbances.
People with Multiple Sclerosis typically exhibit greater levels of exercise-induced fatigue compared to healthy individuals. However, it is unknown if voluntary muscle activation is affected over a range of contraction forces in people with MS who have exercise-induced fatigue. The purpose of this study was to use transcranial magnetic stimulation (TMS) and electrical muscle stimulation to examine muscle activation during exercise-induced fatigue. Ten people with relapsing-remitting MS (39 ± 7 years) and 10 healthy controls (40 ± 5 years) performed elbow flexions at 25%, 50%, 75%, 90%, and 100% MVC while electromyography (EMG) of the biceps brachii was recorded. Sustained elbow flexion MVCs were then performed until force declined to 60% of baseline MVC, and the target contraction intensities of 25%, 50%, 75%, 90%, and 100% MVC were examined again. The Fatigue Severity Scale was higher for the MS group (P < 0.01). Exercise-induced fatigue caused a reduction in biceps EMG amplitude for the MS group across all contraction intensities (P < 0.01), which was not aligned with changes in MEP amplitude (P = 0.25). Exercise-induced fatigue reduced motor cortical voluntary activation in the MS group across all contraction intensities (P < 0.01), as well as increased MS time-to-peak force (P < 0.01) and half relaxation time for TMS evoked twitches (P = 0.03). These findings provide evidence that MS-related fatigability during maximal contractions is due to the inability for the motor cortex to drive the muscle, with possible contributions from altered contractile properties in the MS muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.