There is growing interest in creating untethered soft robotic matter that can repeatedly shape-morph and self-propel in response to external stimuli. Toward this goal, we printed soft robotic matter composed of liquid crystal elastomer (LCE) bilayers with orthogonal director alignment and different nematic-to-isotropic transition temperatures (TNI) to form active hinges that interconnect polymeric tiles. When heated above their respective actuation temperatures, the printed LCE hinges exhibit a large, reversible bending response. Their actuation response is programmed by varying their chemistry and printed architecture. Through an integrated design and additive manufacturing approach, we created passively controlled, untethered soft robotic matter that adopts task-specific configurations on demand, including a self-twisting origami polyhedron that exhibits three stable configurations and a “rollbot” that assembles into a pentagonal prism and self-rolls in programmed responses to thermal stimuli.
We have created 3D printable and reconfigurable LCEs that reversibly shape-morph when cycled above and below their T NI , whose actuated shape can be locked-in via high-temperature UV exposure. By synthesizing LCE-based inks with light-triggerable dynamic bonds, we can harness printing to locally program their director alignment and use UV light to enable controlled network reconfiguration without requiring an imposed mechanical field. Using this integrated approach, we constructed 3D LCEs in both monolithic and heterogenous layouts that exhibited complex shape changes, and whose transformed shapes could be locked-in on demand.
Charge transport in semiconducting polymers is inextricably linked to their microstructure, making the characterization of polymer morphology at all length-scales essential for understanding the factors that limit mobility in these materials. Indeed, charge transport depends both on the ability of polarons to delocalize at the approximately nanometer length-scale and navigate a complex energetic and morphological mesoscale landscape. While characterization of the mesoscale morphology of polymers is wellestablished, studies of the local chain packing and nanoscale disorder, which affect delocalization, can be significantly more difficult to carry out. Through infrared charge modulation spectroscopy and theoretical modeling, the effect of the local chain environment on polaron delocalization is directly measured and quantified. Using a series of polymers based on the model system, poly(3-hexylthiophene), the link between disorder and polaron localization is systematically explored. Polaron delocalization is correlated with known trends in mobility, revealing that while charge delocalization is always beneficial, the formation of tie-chains is necessary to reach the highest mobilities in semicrystalline polymers. The results provide direct evidence for the importance of both nanoscale (charge carrier delocalization) and mesoscale (tie-chains) orders, demonstrating the need to distinguish the key length-scale limiting charge transport in the design of new, high mobility polymers.
Predicting the interactions between a semiconducting polymer and dopant is not straightforward due to the intrinsic structural and energetic disorder in polymeric systems. Although the driving force for efficient charge transfer depends on a favorable offset between the electron donor and acceptor, we demonstrate that the efficacy of doping also relies on structural constraints of incorporating a dopant molecule into the semiconducting polymer film. Here, we report the evolution in spectroscopic and electrical properties of a model conjugated polymer upon exposure to two dopant types: one that directly oxidizes the polymeric backbone and one that protonates the polymer backbone. Through vapor phase infiltration, the common charge transfer dopant, F 4 -TCNQ, forms a charge transfer complex (CTC) with the polymer poly(3-(2′-ethyl)hexylthiophene) (P3EHT), a conjugated polymer with the same backbone as the well-characterized polymer P3HT, resulting in a maximum electrical conductivity of 3 × 10 −5 S cm −1 . We postulate that the branched side chains of P3EHT force F 4 -TCNQ to reside between the π-faces of the crystallites, resulting in partial charge transfer between the donor and the acceptor. Conversely, protonation of the polymeric backbone using the strong acid, HTFSI, increases the electrical conductivity of P3EHT to a maximum of 4 × 10 −3 S cm −1 , 2 orders of magnitude higher than when a charge transfer dopant is used. The ability for the backbone of P3EHT to be protonated by an acid dopant, but not oxidized directly by F 4 -TCNQ, suggests that steric hindrance plays a significant role in the degree of charge transfer between dopant and polymer, even when the driving force for charge transfer is sufficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.