A series of silylated amines have been synthesized for use as reversible ionic liquids in the application of post‐combustion carbon capture. We describe a molecular design process aimed at influencing industrially relevant carbon capture properties, such as viscosity, temperature of reversal, and enthalpy of regeneration, while maximizing the overall CO2‐capture capacity. A strong structure–property relationship among the silylamines is demonstrated in which minor structural modifications lead to significant changes in the bulk properties of the reversible ionic liquid formed from reaction with CO2.
Reversible systems such as silylamines are neutral amines that can react reversibly with CO2 to form the corresponding ammonium carbamate ionic pair. The ionic-to-neutral ‘switch’ capability provides an advantageous means for efficient synthesis and facile deposition of nanoparticles onto a solid support. Herein, we first illustrate the surface active/non-surface active duality of the silylamine systems with the reversible solubilization-precipitation of methyl orange from a hexane solution of the 3-(aminopropyl)tripropylsilane (TPSA) system (0·275 M). The authors then demonstrate the application of this system to the controlled reduction of an ionic gold salt to yield gold nanoparticles using two reversible silylamine systems: TPSA and 3-(aminopropyl)trihexylsilane (THSA). The post-synthesis deposition of the THSA-stabilized gold nanoparticles from solution onto a support using the surface active/non-surface active duality of these systems was also demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.