Local delivery of active agents using injectable or implantable hydrogels for tissue and bone regeneration is a promising therapy, but it remains challenging for controlling dose and duration of release. Simvastatin (SMV), a hydrophobic drug, has shown potential for osteogenic stimulation. Secure loading of hydrophobic drugs by physical interactions is particularly difficult to establish in hydrophilic polymer matrices, and their sustained release over several months for long‐term regeneration has rarely been reported. Additionally, mechanical properties of hydrogels must be improved for a sufficient support while maintaining eventual biodegradability. This study assesses the effect of controlled SMV release from 3D‐printed triple‐network hydrogels for osteogenic stimulation and characterizes their mechanical and biological properties as an implant. SMV is loaded into polymeric micelles of polylactide/poly(ethylene glycol) triblock copolymers (PLA–PEG–PLA) and mixed with N‐methacryloyl chitosan and PEG dimethacrylate to fabricate hydrogels by photo‐cross‐linked 3D printing. The hydrogel properties and drug release profiles have shown significant dependance on the polymer compositions. The SMV release from the triple‐polymer‐network hydrogel has continued for 17 weeks of observation. Cytocompatibility of hydrogels with various formulations is confirmed. The tunable triple‐network hydrogels loaded with SMV provide a potential therapeutic value for bone regeneration.
Chitosan nanofiber membranes are recognized as functional antimicrobial materials, as they can effectively provide a barrier that guides tissue growth and supports healing. Methods to stabilize nanofibers in aqueous solutions include acylation with fatty acids. Modification with fatty acids that also have antimicrobial and biofilm-resistant properties may be particularly beneficial in tissue regeneration applications. This study investigated the ability to customize the fatty acid attachment by acyl chlorides to include antimicrobial 2-decenoic acid. Synthesis of 2decenoyl chloride was followed by acylation of electrospun chitosan membranes in pyridine. Physicochemical properties were characterized through scanning electron microscopy, FTIR, contact angle, and thermogravimetric analysis. The ability of membranes to resist biofilm formation by S. aureus and P. aeruginosa was evaluated by direct inoculation. Cytocompatibility was evaluated by adding membranes to cultures of NIH3T3 fibroblast cells. Acylation with chlorides stabilized nanofibers in aqueous media without significant swelling of fibers and increased hydrophobicity of the membranes. Acyl-modified membranes reduced both S. aureus and P. aeruginosa bacterial biofilm formation on membrane while also supporting fibroblast growth. Acylated chitosan membranes may be useful as wound dressings, guided regeneration scaffolds, local drug delivery, or filtration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.