Agrobacterium transformation systems for Brassica, Solanum and Rubus, using carbenicillin, cefotaxime and ticaracillin respectively to eliminate contamination, were examined for the presence of residual Agrobacterium. The results indicated that none of the antibiotics in question, succeeded in eliminating Agrobacterium and the contamination levels increased in explants from 12 to 16 weeks to such an extent that Solanum cultures senesced and died. This may be due to the fact that four times the Minimum bactericidal concentration values (concentration to be used for elimination of contaminants in culture), for the three antibiotics, were higher than the concentrations employed in the culture medium. Contamination in shoot material decreased over 16 to 24 weeks possibly due to bacteriostatis and the use only of the apical node for further culture. The presence of the binary vector was also noted under non-selective conditions, even up to 6 months after transformation, where approx. 50% of contaminated material still harboured bacterial cells with the binary vector at levels of approx. 107 Colony forming units per gram.Abbreviations: CFU -colony forming units, GUS -fl-glucoronidase, PCR -polymerase chain reaction, MBCminimum bactericidal concentration, NPTII -neomycin phosphotransferase, RAPD's -random amplified polymorphic DNA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.