A key function of the thyroid hormone receptor β (Thrb) gene is in the development of auditory function. However, the roles of the 2 receptor isoforms, TRβ1 and TRβ2, expressed by the Thrb gene are unclear, and it is unknown whether these isoforms promote the maintenance as well as development of hearing. We investigated the function of TRβ1 in mice with a Thrb(b1) reporter allele that expresses β-galactosidase instead of TRβ1. In the immature cochlea, β-galactosidase was detected in the greater epithelial ridge, sensory hair cells, spiral ligament, and spiral ganglion and in adulthood, at low levels in the hair cells, support cells and root cells of the outer sulcus. Although deletion of all TRβ isoforms causes severe, early-onset deafness, deletion of TRβ1 or TRβ2 individually caused no obvious hearing loss in juvenile mice. However, over subsequent months, TRβ1 deficiency resulted in progressive loss of hearing and loss of hair cells. TRβ1-deficient mice had minimal changes in serum thyroid hormone and thyrotropin levels, indicating that hormonal imbalances were unlikely to cause hearing loss. The results suggest mutually shared roles for TRβ1 and TRβ2 in cochlear development and an unexpected requirement for TRβ1 in the maintenance of hearing in adulthood.
Thyroid hormone is critical for auditory development and has well-known actions in the inner ear. However, less is known of thyroid hormone functions in the middle ear, which contains the ossicles (malleus, incus, stapes) that relay mechanical sound vibrations from the outer ear to the inner ear. During the later stages of middle ear development, prior to the onset of hearing, middle ear cavitation occurs, involving clearance of mesenchyme from the middle ear cavity while the immature cartilaginous ossicles attain appropriate size and ossify. Using in situ hybridization, we detected expression of Thra and Thrb genes encoding thyroid hormone receptors α1 and β (TRα1 and TRβ, respectively) in the immature ossicles, surrounding mesenchyme and tympanic membrane in the mouse. Thra(+/PV) mice that express a dominant-negative TRα1 protein exhibited deafness with elevated auditory thresholds and a range of middle ear abnormalities including chronic persistence of mesenchyme in the middle ear into adulthood, markedly enlarged ossicles, and delayed ossification of the ossicles. Congenitally hypothyroid Tshr(-/-) mice and TR-deficient Thra1(-/-);Thrb(-/-) mice displayed similar abnormalities. These findings demonstrate that middle ear maturation is TR dependent and suggest that the middle ear is a sensitive target for thyroid hormone in development.
Serum- and glucocorticoid-induced kinase-1 (SGK1) is involved in aldosterone-induced Na(+) reabsorption by increasing epithelial Na(+) channel (ENaC) activity in cortical collecting duct (CCD) cells, but its exact mechanisms of action are unknown. Although several potential targets such as Nedd4-2 have been described in expression systems, endogenous substrates mediating SGK1's physiological effects remain to be identified. In addition, subcellular localization studies of SGK1 have provided controversial results. We determined the subcellular location of SGK1 using SGK1-autofluorescent protein (AFP) fusion proteins. Rabbit CCD (RCCT-28A) cells were transiently transfected with a construct encoding for SGK1-AFP and were stained or cotransfected with markers for various subcellular compartments. In live cells, transiently expressed SGK1-AFP clearly colocalized with the mitochondrial marker rhodamine 123. Similarly, SGK1-AFP colocalized with the mitochondrial marker MitoTracker when stably expressed using a retroviral system in either RCCT-28A cells or the mammary epithelial cell line MCF10A. To determine which region of SGK1 is responsible for this subcellular localization, we generated RCCT-28A cell lines stably expressing SGK1 mutants. The results indicate that the NH(2)-terminal 60-amino acid region of SGK1 is necessary and sufficient for its subcellular localization. Localization of SGK1 to the mitochondria raises the possibility that SGK1 may play a role in regulating energy metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.