Schizophrenia is a heterogenous and severe neuropsychiatric disorder that affects nearly 1% of the population worldwide. Antipsychotic drugs are the mainstay of treatment, but not all patients with schizophrenia respond to treatment with these agents. Clozapine, the first atypical antipsychotic, is a highly effective medication for patients with schizophrenia who do not respond to other antipsychotics. Although clozapine tends not to produce extrapyramidal symptoms, other side effects of the drug (e.g., agranulocytosis, myocarditis, seizures) limit its widespread use. This chapter reviews clozapine's unique clinical effects and unusual pharmacological profile. In addition to its effects in treatment-resistant schizophrenia, clozapine has been shown to decrease suicidality, which occurs at an increased rate in patients with schizophrenia. Still preliminary, but consistent data, also suggest that clozapine limits substance use in these patients, an important effect since substance use disorders are common in patients with schizophrenia and are associated with a poor outcome, including an increased risk for suicide and poor response to treatment. We have suggested, from animal studies, that clozapine's apparent ability to limit substance use may occur through its actions as a weak dopamine D2 receptor antagonist, a potent norepinephrine α-2 receptor antagonist and a norepinephrine reuptake inhibitor. Using animal models, we have built combinations of agents toward creation of safer clozapine-like drugs to reduce substance use in these patients. Future research into the mechanisms of action of clozapine toward the development of safe clozapine-like agents is of great public health importance.
Background: Although male and female rats differ in their patterns of alcohol use, little is known regarding the neural circuit activity that underlies these differences in behavior. The current study used a machine learning approach to characterize sex differences in local field potential (LFP) oscillations that may relate to sex differences in alcohol-drinking behavior.Methods: LFP oscillations were recorded from the nucleus accumbens shell and the rodent medial prefrontal cortex of adult male and female Sprague-Dawley rats. Recordings occurred before rats were exposed to alcohol (n = 10/sex × 2 recordings/rat) and during sessions of limited access to alcohol (n = 5/sex × 5 recordings/rat). Oscillations were also recorded from each female rat in each phase of estrous prior to alcohol exposure. Using machine learning, we built predictive models with oscillation data to classify rats based on: (1) biological sex, (2) phase of estrous, and (3) alcohol intake levels. We evaluated model performance from real data by comparing it to the performance of models built and tested on permutations of the data. Results: Our data demonstrate that corticostriatal oscillations were able to predict alcohol intake levels in males (p < 0.01), but not in females (p = 0.45). The accuracies of models predicting biological sex and phase of estrous were related to fluctuations observed in alcohol drinking levels; females in diestrus drank more alcohol than males (p = 0.052), and the male vs. diestrus female model had the highest accuracy (71.01%) compared to chance estimates. Conversely, females in estrus drank very similar amounts of alcohol to males (p = 0.702), and the male vs. estrus female model had the lowest accuracy (56.14%) compared to chance estimates. Conclusions: The current data demonstrate that oscillations recorded from corticostriatal circuits contain significant information regarding alcohol drinking in males, but not alcohol drinking in females. Future work will focus on identifying where to record LFP oscillations in order to predict alcohol drinking in females, which may help elucidate sex-specific neural targets for future therapeutic development.
Maternal immune activation (MIA) is strongly associated with an increased risk of developing mental illness in adulthood, which often co-occurs with alcohol misuse. The current study aimed to begin to determine whether MIA, combined with adolescent alcohol exposure (AE), could be used as a model with which we could study the neurobiological mechanisms behind such co-occurring disorders. Pregnant Sprague-Dawley rats were treated with polyI:C or saline on gestational day 15. Half of the offspring were given continuous access to alcohol during adolescence, leading to four experimental groups: controls, MIA, AE, and Dual (MIA + AE). We then evaluated whether MIA and/or AE alter: (1) alcohol consumption; (2) locomotor behavior; and (3) cortical-striatal-hippocampal local field potentials (LFPs) in adult offspring. Dual rats, particularly females, drank significantly more alcohol in adulthood compared to all other groups. MIA led to reduced locomotor behavior in males only. Using machine learning to build predictive models from LFPs, we were able to differentiate Dual rats from control rats and AE rats in both sexes, and Dual rats from MIA rats in females. These data suggest that Dual “hits” (MIA + AE) increases substance use behavior and disrupts activity in reward-related circuits, and that this may be a valuable heuristic model we can use to study the neurobiological underpinnings of co-occurring disorders. Our future work aims to extend these findings to other addictive substances to enhance the translational relevance of this model, as well as determine whether amelioration of these circuit disruptions can reduce substance use behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.