Populations of Chinook Salmon Oncorhynchus tshawytscha in California are in decline due to the combined effects of habitat degradation, water diversions, and climate change. Reduced life history diversity within these populations inhibits their ability to respond to these stressors. Putah Creek, a small creek in California’s Central Valley that once supported Chinook Salmon, is undergoing restoration to provide spawning habitats for this imperiled species. Beginning in 2014, increasing numbers of Chinook Salmon spawned throughout the creek, and emigrating juveniles were observed in the following months. Here we used otolith annual growth bands and microchemistry to investigate the age structure and natal origins of the adult spawners. Most individuals were 2 or 3 years old, and they originated from at least seven different natal sources, overwhelmingly from Central Valley hatcheries (~88%). These findings highlight that straying fall‐run Central Valley Chinook Salmon can rapidly utilize restored habitats, potentially establishing new populations. However, to facilitate local adaptations, straying rates and gene flow will have to be managed over time. Reconnecting migratory pathways and restoring many small and diverse streams, like Putah Creek, provides an opportunity to increase life history diversity, strengthening the recovery and resilience of Chinook Salmon.
Stream restorations are increasingly critical for managing and recovering freshwater biodiversity in human-dominated landscapes. However, few studies have quantified how rehabilitative actions promulgate through aquatic communities over decades. Here, a long-term dataset is analyzed for fish assemblage change, incorporating data pre-and post-restoration periods, and testing the extent to which native assemblage stability has increased over time. In the late 1950s, a large capacity dam was installed on Putah Creek (Solano County, CA, USA), which altered the natural flow regime, channel structure, geomorphic processes, and overall ecological function. Notably, downstream flows were reduced (especially during summer months) resulting in an aquatic assemblage dominated by warm-water nonnative species, while endemic native species subsisted at low levels as subordinates. A court-mediated Accord was ratified in 2000, providing a more natural flow regime, specifically for native and anadromous fishes in the stream. The richness of nonnative
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.