We introduce n(n−1)/2 natural involutions ("toggles") on the set S of noncrossing partitions π of size n, along with certain composite operations obtained by composing these involutions. We show that for many operations T of this kind, a surprisingly large family of functions f on S (including the function that sends π to the number of blocks of π) exhibits the homomesy phenomenon: the average of f over the elements of a T -orbit is the same for all T -orbits. We can apply our method of proof more broadly to toggle operations back on the collection of independent sets of certain graphs. We utilize this generalization to prove a theorem about toggling on a family of graphs called "2-cliquish." More generally, the philosophy of this "toggle-action," proposed by Striker, is a popular topic of current and future research in dynamic algebraic combinatorics.
Originally studied by Conway and Coxeter, friezes appeared in various recreational mathematics publications in the 1970s. More recently, in 2015, Baur, Parsons, and Tschabold constructed periodic infinite friezes and related them to matching numbers in the once-punctured disk and annulus. In this paper, we study such infinite friezes with an eye towards cluster algebras of type D and affine A, respectively. By examining infinite friezes with Laurent polynomial entries, we discover new symmetries and formulas relating the entries of this frieze to one another. Lastly, we also present a correspondence between Broline, Crowe and Isaacs's classical matching tuples and combinatorial interpretations of elements of cluster algebras from surfaces.Date: June 1, 2017. 2010 Mathematics Subject Classification. 13F60 (primary), 05C70, 05E15 (secondary).
Abstract. We extend a T -path expansion formula for arcs on an unpunctured surface to the case of arcs on a once-punctured polygon and use this formula to give a combinatorial proof that cluster monomials form the atomic basis of a cluster algebra of type D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.