<p>The tyrosine kinase MET (hepatocyte growth factor receptor) is abnormally activated in a wide range of cancers and is often correlated with a poor prognosis. Precision medicine with positron emission tomography (PET) can potentially aid in the assessment of tumor biochemistry and heterogeneity, which can prompt the selection of the most effective therapeutic regimes. The selective MET inhibitor PF04217903 (<b>1</b>) formed the basis for a bioisosteric replacement to the deoxyfluorinated analogue [<sup>18</sup>F]<b>2</b>, intended as a PET tracer for MET. [<sup>18</sup>F]<b>2 </b>could be synthesized with a “hydrous fluoroethylation” protocol in 6.3 ± 2.6% radiochemical yield and a molar activity of >50 GBq/µmol. <i>In vitro</i> autoradiography indicated that [<sup>18</sup>F]<b>2 </b>specifically binds to MET in PC3 tumor tissue, and <i>in vivo</i> biodistribution in mice showed predominantly a hepatobiliary excretion along with a low retention of radiotracer in other organs. </p>
<p>The tyrosine kinase MET (hepatocyte growth factor receptor) is abnormally activated in a wide range of cancers and is often correlated with a poor prognosis. Precision medicine with positron emission tomography (PET) can potentially aid in the assessment of tumor biochemistry and heterogeneity, which can prompt the selection of the most effective therapeutic regimes. The selective MET inhibitor PF04217903 (<b>1</b>) formed the basis for a bioisosteric replacement to the deoxyfluorinated analogue [<sup>18</sup>F]<b>2</b>, intended as a PET tracer for MET. [<sup>18</sup>F]<b>2 </b>could be synthesized with a “hydrous fluoroethylation” protocol in 6.3 ± 2.6% radiochemical yield and a molar activity of >50 GBq/µmol. <i>In vitro</i> autoradiography indicated that [<sup>18</sup>F]<b>2 </b>specifically binds to MET in PC3 tumor tissue, and <i>in vivo</i> biodistribution in mice showed predominantly a hepatobiliary excretion along with a low retention of radiotracer in other organs. </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.