In this paper we derive the full set of differential equations and some algebraic relations for p-forms constructed from type IIB Killing spinors. These equations are valid for the most general type IIB supersymmetric backgrounds which have a non-zero NS-NS 3-form field strength, H, and non-zero R-R field strengths, G (1) , G (3) and G (5) . Our motivation is to use these equations to obtain generalised calibrations for branes in supersymmetric backgrounds. In particular, we consider giant gravitons in AdS 5 × S 5 . These non-static branes have an interesting construction via holomorphic surfaces in C 1,2 ×C 3 . We construct the p-forms corresponding to these branes and show that they satisfy the correct differential equations. Moreover, we interpret the equations as calibration conditions and derive the calibration bound. We find that giant gravitons minimise "energy minus momentum".
We investigate the quantum mechanics of the doubled torus system, introduced by Hull [1] to describe T-folds in a more geometric way. Classically, this system consists of a world-sheet Lagrangian together with some constraints, which reduce the number of degrees of freedom to the correct physical number. We consider this system from the point of view of constrained Hamiltonian dynamics. In this case the constraints are second class, and we can quantize on the constrained surface using Dirac brackets. We perform the quantization for a simple T-fold background and compare to results for the conventional non-doubled torus system. Finally, we formulate a consistent supersymmetric version of the doubled torus system, including supersymmetric constraints.
There is much interest in building deterministic continuum models from discrete agent-based models governed by local stochastic rules where an agent represents a biological cell. In developmental biology, cells are able to move and undergo cell division on and within growing tissues. A growing tissue is itself made up of cells which undergo cell division, thereby providing a significant transport mechanism for other cells within it. We develop a discrete agent-based model where domain agents represent tissue cells. Each agent has the ability to undergo a proliferation event whereby an additional domain agent is incorporated into the lattice. If a probability distribution describes the waiting times between proliferation events for an individual agent, then the total length of the domain is a random variable. The average behavior of these stochastically proliferating agents defining the growing lattice is determined in terms of a Fokker-Planck equation, with an advection and diffusion term. The diffusion term differs from the one obtained Landman and Binder [J. Theor. Biol. 259, 541 (2009)] when the rate of growth of the domain is specified, but the choice of agents is random. This discrepancy is reconciled by determining a discrete-time master equation for this process and an associated asymmetric nonexclusion random walk, together with consideration of synchronous and asynchronous updating schemes. All theoretical results are confirmed with numerical simulations. This study furthers our understanding of the relationship between agent-based rules, their implementation, and their associated partial differential equations. Since tissue growth is a significant cellular transport mechanism during embryonic growth, it is important to use the correct partial differential equation description when combining with other cellular functions.
We construct the Killing superalgebra of supersymmetric backgrounds of 10-dimensional heterotic and type II supergravities and prove that it is a Lie superalgebra. We also show that if the fraction of supersymmetry preserved by the background is greater than 1/2, in the heterotic case, or greater than 3/4 in the type II case, then the background is locally homogeneous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.