Introduction: Nitrogen enrichment of coastal salt marshes can induce feedbacks that alter ecosystem-level processes including primary production and carbon sequestration. Despite the rising interest in coastal blue carbon, the effects of chronic nutrient enrichment on blue carbon processes have rarely been measured in the context of experimental fertilization. Here, we examined the ecosystem-level effects of nitrate (NO 3 −) enrichment on the greenhouse gas dynamics of a Spartina alterniflora-dominated salt marsh. We measured CO 2 and CH 4 fluxes using static chambers through two growing seasons in a salt marsh that was nitrogen-enriched for 13 years and compared fluxes to those from a reference marsh. Outcomes: We found that nitrogen enrichment increased gross primary productivity (GPP) by 7.7% and increased ecosystem respiration (R eco) by 20.8%. However, nitrogen enrichment had no discernible effect on net ecosystem exchange (NEE). Taken together, these results suggest that nitrogen-induced stimulation of R eco could transform this salt marsh from a carbon sink into a source of carbon to the atmosphere. Conclusion: Our results complement prior findings of nitrogen enrichment weakening soil structure and organic matter stability in tidal salt marshes, suggesting that increased nutrient inputs have the potential to alter the carbon storage function of these ecosystems through enhanced microbial respiration of previously sequestered carbon.
The ongoing climate crisis merits an urgent need to devise management approaches and new technologies to reduce atmospheric greenhouse gas concentrations (GHG) in the near term. However, each year that GHG concentrations continue to rise, pressure mounts to develop and deploy atmospheric CO2 removal pathways as a complement to, and not replacement for, emissions reductions. Soil carbon sequestration (SCS) practices in working lands provide a low‐tech and cost‐effective means for removing CO2 from the atmosphere while also delivering co‐benefits to people and ecosystems. Our model estimates suggest that, assuming additive effects, the technical potential of combined SCS practices can provide 30%–70% of the carbon removal required by the Paris Climate Agreement if applied to 25%–50% of the available global land area, respectively. Atmospheric CO2 drawdown via SCS has the potential to last decades to centuries, although more research is needed to determine the long‐term viability at scale and the durability of the carbon stored. Regardless of these research needs, we argue that SCS can at least serve as a bridging technology, reducing atmospheric CO2 in the short term while energy and transportation systems adapt to a low‐C economy. Soil C sequestration in working lands holds promise as a climate change mitigation tool, but the current rate of implementation remains too slow to make significant progress toward global emissions goals by 2050. Outreach and education, methodology development for C offset registries, improved access to materials and supplies, and improved research networks are needed to accelerate the rate of SCS practice implementation. Herein, we present an argument for the immediate adoption of SCS practices in working lands and recommendations for improved implementation.
Recent analysis by the IPCC suggests that, across an array of scenarios, both GHG emissions reductions and various degrees of carbon removal will be required to achieve climate stabilization at a level that avoids the most dangerous climate changes in the future. Among a large number of options in the realm of natural climate solutions, atmospheric carbon dioxide removal (CDR) via enhanced silicate weathering (EW) in global working lands could, in theory, achieve billions of tons of CO2 removal each year. Despite such potential, however, scientific verification and field testing of this technology are still in need of significant advancement. Increasing the number of EW field trials can be aided by formal presentation of effective study designs and methodological approaches to quantifying CO2 removal. In particular, EW studies in working lands require interdisciplinary “convergence” research that links low temperature geochemistry and agronomy. Here, drawing on geologic and agronomic literature, as well as demonstration-scale research on quantifying EW, we provide an overview of (1) existing literature on EW experimentation as a CO2 removal technique, (2) agronomic and geologic approaches to studying EW in field settings, (3) the scientific bases and tradeoffs behind various techniques for quantifying CO2 removal and other relevant methodologies, and (4) the attributes of effective stakeholder engagement for translating scientific research in action. In doing so, we provide a guide for establishing interdisciplinary EW field trials, thereby advancing the verification of atmospheric CO2 in working lands through the convergence of geochemistry and agronomy.
Soil carbon (C) sequestration in agricultural working lands via soil amendments and management practices is considered a relatively well‐tested and affordable approach for removing CO2 from the atmosphere. Carbon farming provides useful benefits for soil health, biomass production, and crop resilience, but the effects of different soil C sequestration approaches on the nitrogen (N) cycle remain controversial. While some C farming practices have been shown to reduce N fertilizer use in some cases, C farming could also impose an unwanted “N penalty” through which soil C gains can only be maintained with additional N inputs, thereby increasing N losses to the environment. We systematically reviewed meta‐analysis studies on the impacts of C farming on N cycling in agroecosystems and estimated the cumulative effect of several C farming practices on N cycling. We found that, on average, combined C farming practices significantly reduced nitrous oxide emissions and nitrate leaching from soils, thus inferring both N cycling and climate change benefits. In addition to more widely studied C farming practices that generate organic C, we also discuss silicate rock additions, which offer a pathway to inorganic C sequestration that does not require additional N inputs, framing important questions for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.