We analyzed the effects of a single 14-day course of teplizumab treatment on metabolic function and immune cells among participants in a previously reported randomized controlled trial of nondiabetic relatives at high risk for type 1 diabetes (T1D). In an extended follow-up (923-day median) of a previous report of teplizumab treatment, we found that the median times to diagnosis were 59.6 and 27.1 months for teplizumab- and placebo-treated participants, respectively (HR = 0.457, P = 0.01). Fifty percent of teplizumab-treated but only 22% of the placebo-treated remained diabetes-free. Glucose tolerance, C-peptide area under the curve (AUC), and insulin secretory rates were calculated, and relationships to T cell subsets and function were analyzed. Teplizumab treatment improved beta cell function, reflected by average on-study C-peptide AUC (1.94 versus 1.72 pmol/ml; P = 0.006). Drug treatment reversed a decline in insulin secretion before enrollment, followed by stabilization of the declining C-peptide AUC seen with placebo treatment. Proinsulin:C-peptide ratios after drug treatment were similar between the treatment groups. The changes in C-peptide with teplizumab treatment were associated with increases in partially exhausted memory KLRG1+TIGIT+CD8+ T cells (r = 0.44, P = 0.014) that showed reduced secretion of IFNγ and TNFα. A single course of teplizumab had lasting effects on delay of T1D diagnosis and improved beta cell function in high-risk individuals. Changes in CD8+ T cell subsets indicated that partially exhausted effector cells were associated with clinical response. Thus, this trial showed improvement in metabolic responses and delay of diabetes with immune therapy.
OBJECTIVEWe tested whether an elevation in the serum proinsulin–to–C-peptide ratio (PI:C), a biomarker of β-cell endoplasmic reticulum (ER) dysfunction, was associated with progression to type 1 diabetes.RESEARCH DESIGN AND METHODSFasting total PI and C levels were measured in banked serum samples obtained from TrialNet Pathway to Prevention (PTP) participants, a cohort of autoantibody-positive relatives without diabetes of individuals with type 1 diabetes. Samples were obtained ∼12 months before diabetes onset from PTP progressors in whom diabetes developed (n = 60), and were compared with age-, sex-, and BMI-matched nonprogressors who remained normoglycemic (n = 58). PI:C ratios were calculated as molar ratios and were multiplied by 100% to obtain PI levels as a percentage of C levels.RESULTSAlthough absolute PI levels did not differ between groups, PI:C ratios were significantly increased in antibody-positive subjects in whom there was progression to diabetes compared with nonprogressors (median 1.81% vs. 1.17%, P = 0.03). The difference between groups was most pronounced in subjects who were ≤10 years old, where the median progressor PI:C ratio was nearly triple that of nonprogressors; 90.0% of subjects in this age group within the upper PI:C quartile progressed to the development of diabetes. Logistic regression analysis, adjusted for age and BMI, demonstrated increased odds of progression for higher natural log PI:C ratio values (odds ratio 1.44, 95% CI 1.02, 2.05).CONCLUSIONSThese data suggest that β-cell ER dysfunction precedes type 1 diabetes onset, especially in younger children. Elevations in the serum PI:C ratio may have utility in predicting the onset of type 1 diabetes in the presymptomatic phase.
We propose that circulating EV miR-21-5p may be a promising marker of developing type 1 diabetes. Additionally, our findings highlight that, for certain miRNAs, total circulating miRNA levels are distinct from circulating EV miRNA content.
Histological analysis of donor pancreases coupled with measurement of serum C-peptide in clinical cohorts has challenged the idea that all beta cells are eventually destroyed in type 1 diabetes. These findings have raised a number of questions regarding how the remaining beta cells have escaped immune destruction, whether pools of ‘sleeping’ or dysfunctional beta cells could be rejuvenated and whether there is potential for new growth of beta cells. In this Review, we describe histological and in vivo evidence of persistent beta cells in type 1 diabetes and discuss the limitations of current methods to distinguish underlying beta cell mass in comparison with beta cell function. We highlight that evidence for new beta cell growth in humans many years from diagnosis is limited, and that this growth may be very minimal if at all present. We review recent contributions to the debate around beta cell abnormalities contributing to the pathogenesis of type 1 diabetes. We also discuss evidence for restoration of beta cell function, as opposed to mass, in recent-onset type 1 diabetes, but highlight the absence of data supporting functional recovery in the setting of long-duration diabetes. Finally, future areas of research are suggested to help resolve the source and phenotype of residual beta cells that persist in some, but not all, people with type 1 diabetes.
Abnormally elevated proinsulin secretion has been reported in type 2 and early type 1 diabetes when significant C-peptide is present. We questioned whether individuals with long-standing type 1 diabetes and low or absent C-peptide secretory capacity retained the ability to make proinsulin. RESEARCH DESIGN AND METHODS C-peptide and proinsulin were measured in fasting and stimulated sera from 319 subjects with long-standing type 1 diabetes (‡3 years) and 12 control subjects without diabetes. We considered three categories of stimulated C-peptide: 1) C-peptide positive, with high stimulated values ‡0.2 nmol/L; 2) C-peptide positive, with low stimulated values ‡0.017 but <0.2 nmol/L; and 3) C-peptide <0.017 nmol/L. Longitudinal samples were analyzed from C-peptide-positive subjects with diabetes after 1, 2, and 4 years. RESULTS Of individuals with long-standing type 1 diabetes, 95.9% had detectable serum proinsulin (>3.1 pmol/L), while 89.9% of participants with stimulated C-peptide values below the limit of detection (<0.017 nmol/L; n = 99) had measurable proinsulin. Proinsulin levels remained stable over 4 years of follow-up, while C-peptide decreased slowly during longitudinal analysis. Correlations between proinsulin with C-peptide and mixed-meal stimulation of proinsulin were found only in subjects with high stimulated C-peptide values (‡0.2 nmol/L). Specifically, increases in proinsulin with mixed-meal stimulation were present only in the group with high stimulated C-peptide values, with no increases observed among subjects with low or undetectable (<0.017 nmol/L) residual C-peptide. CONCLUSIONS In individuals with long-duration type 1 diabetes, the ability to secrete proinsulin persists, even in those with undetectable serum C-peptide. Type 1 diabetes results from autoimmune-mediated destruction of the pancreatic b-cell, resulting in the need for exogenous insulin treatment (1). The classic paradigm that type 1 diabetes leads to a complete loss of b-cell mass and absolute insulin deficiency has been challenged by recent data (1). Analysis of pancreatic sections from organ donors with diabetes indicates the presence of residual insulin-containing islets many years after disease onset (2). In addition, multiple groups have reported detectable levels of serum C-peptide in cohorts of individuals with long-duration T1D (3-9). These studies have included highly selected populations, such as the Joslin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.