Nanopatterning of biomaterials is rapidly emerging as a tool to engineer cell function. Bulk metallic glasses (BMGs), a class of biocompatible materials, are uniquely suited to study nanopattern–cell interactions as they allow for versatile fabrication of nanopatterns through thermoplastic forming. Work presented here employs nanopatterned BMG substrates to explore detection of nanopattern feature sizes by various cell types, including cells that are associated with foreign body response, pathology, and tissue repair. Fibroblasts decreased in cell area as the nanopattern feature size increased, and fibroblasts could detect nanopatterns as small as 55 nm in size. Macrophages failed to detect nanopatterns of 150 nm or smaller in size, but responded to a feature size of 200 nm, resulting in larger and more elongated cell morphology. Endothelial cells responded to nanopatterns of 100 nm or larger in size by a significant decrease in cell size and elongation. On the basis of these observations, nondimensional analysis was employed to correlate cellular morphology and substrate nanotopography. Analysis of the molecular pathways that induce cytoskeletal remodeling, in conjunction with quantifying cell traction forces with nanoscale precision using a unique FIB-SEM technique, enabled the characterization of underlying biomechanical cues. Nanopatterns altered serum protein adsorption and effective substrate stiffness, leading to changes in focal adhesion density and compromised activation of Rho-A GTPase in fibroblasts. As a consequence, cells displayed restricted cell spreading and decreased collagen production. These observations suggest that topography on the nanoscale can be designed to engineer cellular responses to biomaterials.
Electrochemical devices such as fuel cells, electrolyzers, lithium-air batteries, and pseudocapacitors are expected to play a major role in energy conversion/storage in the near future. Here, it is demonstrated how desirable bulk metallic glass compositions can be obtained using a combinatorial approach and it is shown that these alloys can serve as a platform technology for a wide variety of electrochemical applications through several surface modification techniques.
Mesenchymal stem cell (MSC) differentiation is regulated by surface modification including texturing, which is applied to materials to enhance tissue integration. Here, we used Pt57.5Cu14.7Ni5.3P22.5 bulk metallic glass (Pt-BMG) with nanopatterned surfaces achieved by thermoplastic forming to influence differentiation of human MSCs. Pt-BMGs are a unique class of amorphous metals with high strength, elasticity, corrosion resistance, and an unusual plastic-like processability. It was found that flat and nanopattened Pt-BMGs induced osteogenic and adipogenic differentiation, respectively. In addition, osteogenic differentiation on flat BMG exceeded that observed on medical grade titanium and was associated with increased formation of focal adhesions and YAP nuclear localization. In contrast, cells on nanopatterned BMGs exhibited rounded morphology, formed less focal adhesions and had mostly cytoplasmic YAP. These changes were preserved on nanopatterns made of nanorods with increased stiffness due to shorter aspect ratios, suggesting that MSC differentiation was primarily influenced by topography. These observations indicate that both elemental composition and nanotopography can modulate biochemical cues and influence MSCs. Moreover, the processability and highly tunable nature of Pt-BMGs enables the creation of a wide range of surface topographies that can be reproducibly and systematically studied, leading to the development of implants capable of engineering MSC functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.