AsbtractThe COVID-19 pandemic has devastated many low- and middle-income countries, causing widespread food insecurity and a sharp decline in living standards1. In response to this crisis, governments and humanitarian organizations worldwide have distributed social assistance to more than 1.5 billion people2. Targeting is a central challenge in administering these programmes: it remains a difficult task to rapidly identify those with the greatest need given available data3,4. Here we show that data from mobile phone networks can improve the targeting of humanitarian assistance. Our approach uses traditional survey data to train machine-learning algorithms to recognize patterns of poverty in mobile phone data; the trained algorithms can then prioritize aid to the poorest mobile subscribers. We evaluate this approach by studying a flagship emergency cash transfer program in Togo, which used these algorithms to disburse millions of US dollars worth of COVID-19 relief aid. Our analysis compares outcomes—including exclusion errors, total social welfare and measures of fairness—under different targeting regimes. Relative to the geographic targeting options considered by the Government of Togo, the machine-learning approach reduces errors of exclusion by 4–21%. Relative to methods requiring a comprehensive social registry (a hypothetical exercise; no such registry exists in Togo), the machine-learning approach increases exclusion errors by 9–35%. These results highlight the potential for new data sources to complement traditional methods for targeting humanitarian assistance, particularly in crisis settings in which traditional data are missing or out of date.
Mitigating the effects of disease outbreaks with timely and effective interventions requires accurate real-time surveillance and forecasting of disease activity, but traditional health care–based surveillance systems are limited by inherent reporting delays. Machine learning methods have the potential to fill this temporal “data gap,” but work to date in this area has focused on relatively simple methods and coarse geographic resolutions (state level and above). We evaluate the predictive performance of a gated recurrent unit neural network approach in comparison with baseline machine learning methods for estimating influenza activity in the United States at the state and city levels and experiment with the inclusion of real-time Internet search data. We find that the neural network approach improves upon baseline models for long time horizons of prediction but is not improved by real-time internet search data. We conduct a thorough analysis of feature importances in all considered models for interpretability purposes.
Understanding the behavior of emerging disease outbreaks in, or ahead of, real-time could help healthcare officials better design interventions to mitigate impacts on affected populations. Most healthcare-based disease surveillance systems, however, have significant inherent reporting delays due to data collection, aggregation, and distribution processes. Recent work has shown that machine learning methods leveraging a combination of traditionally collected epidemiological information and novel Internet-based data sources, such as disease-related Internet search activity, can produce meaningful "nowcasts" of disease incidence ahead of healthcare-based estimates, with most successful case studies focusing on endemic and seasonal diseases such as influenza and dengue. Here, we apply similar computational methods to emerging outbreaks in geographic regions where no historical presence of the disease of interest has been observed. By combining limited available historical epidemiological data available with disease-related Internet search activity, we retrospectively estimate disease activity in five recent outbreaks weeks ahead of traditional surveillance methods. We find that the proposed computational methods frequently provide useful real-time incidence estimates that can help fill temporal data gaps resulting from surveillance reporting delays. However, the proposed methods are limited by issues of sample bias and skew in search query volumes, perhaps as a result of media coverage.
The COVID-19 pandemic has devastated many low-and middle-income countries (LMICs), causing widespread food insecurity and a sharp decline in living standards 1 . In response to this crisis, governments and humanitarian organizations worldwide have mobilized targeted social assistance programs 2 . Targeting is a central challenge in the administration of these programs: given available data, how does one rapidly identify the individuals and families with the greatest need 3 ? This challenge is particularly acute in the large number of LMICs that lack recent and comprehensive data on household income and wealth [4][5][6] . Here we show that non-traditional "big" data from satellites and mobile phone networks can improve the targeting of anti-poverty programs. Our approach uses traditional survey-based measures of consumption and wealth to train machine learning algorithms that recognize patterns of poverty in non-traditional data; the trained algorithms are then used to prioritize aid to the poorest regions and mobile subscribers. We evaluate this approach by studying Novissi, Togo's flagship emergency cash transfer program, which used these algorithms to determine eligibility for a rural assistance program that disbursed millions of dollars in COVID-19 relief aid. Our analysis compares outcomesincluding exclusion errors, total social welfare, and measures of fairnessunder different targeting regimes. Relative to the geographic targeting options considered by the Government of Togo at the time, the machine learning approach reduces errors of exclusion by 4-21%. Relative to methods that require a comprehensive social registry (a hypothetical exercise; no such registry exists in Togo), the machine learning approach increases exclusion errors by 9-35%. These results highlight the potential for new data sources to contribute to humanitarian response efforts, particularly in crisis settings when traditional data are missing or out of date. 2The COVID-19 pandemic has led to a sharp decline in living standards across the world, as policies designed to stop the spread of the disease have disrupted ordinary economic activity. Economically vulnerable households in low-and middle-income countries (LMICs) are among the hardest hit, with over 100 million individuals estimated to have transitioned into extreme poverty since the onset of the pandemic 7 .To offset the most severe consequences of this sudden income decline, governments and humanitarian organizations around the world have mobilized relief efforts. Gentilini et al. (2021) estimates that over 3,300 new social assistance programs have been launched since early 2020 2 , providing over $800 billion dollars in cash transfer payments to over 1.5 billion people (roughly one fifth of the world's population).The overwhelming majority of COVID-19 response effortsand the majority of cash transfer programs globallyprovide targeted social assistance. In other words, specific criteria are used to determine potential eligibility, typically some proxy for socioeconomic status. In ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.