When every individual has an equal chance of mating with other individuals, the population is classified as panmictic. Amongst metazoan parasites of animals, local-scale panmixia can be disrupted due to not only non-random mating, but also non-random transmission among individual hosts of a single host population or non-random transmission among sympatric host species. Population genetics theory and analyses can be used to test the null hypothesis of panmixia and thus, allow one to draw inferences about parasite population dynamics that are difficult to observe directly. We provide an outline that addresses 3 tiered questions when testing parasite panmixia on local scales: is there greater than 1 parasite population/species, is there genetic subdivision amongst infrapopulations within a host population, and is there asexual reproduction or a non-random mating system? In this review, we highlight the evolutionary significance of non-panmixia on local scales and the genetic patterns that have been used to identify the different factors that may cause or explain deviations from panmixia on a local scale. We also discuss how tests of local-scale panmixia can provide a means to infer parasite population dynamics and epidemiology of medically relevant parasites.
A new species of Alloglossidium is described from the intestines of 2 madtom species (Noturus leptacanthus and Noturus gyrinus) that were collected from the run of a small, unnamed spring system that drains into the Santa Fe River, Florida. Alloglossidium floridense n. sp. is morphologically very similar to other nonprecocious Alloglossidium spp. that use ictalurids as definitive hosts, but can be distinguished by a combination of its smaller overall size (length and width), large eggs in relation to its small body size, position of the vitellaria, ovary shape, and position of the ovary in relation to the cirrus sac. A comparison of nuclear rDNA sequences (spanning partial 18s, complete ITS1, 5.8s, ITS2, and partial 28s regions) showed that A. floridense n. sp. diverged by 0.70-3.17% from the other 4, nonprecocious species that infect ictalurids (Alloglossidium corti, Alloglossidium fonti, Alloglossidium geminum, and Alloglossidium kenti). The new species of Alloglossidium, described herein, is the first of the genus to be reported from Florida and the first to be recorded from N. leptacanthus . In light of the subtle morphological differences among the nonprecocious species that infect ictalurids, we discuss how previous descriptions of species traits that are not supported with genetic data are difficult to interpret because of the possible past nonrecognition of distinct species.
The evolutionary consequences of changes in the complex life cycles of parasites are not limited to the traits that directly affect transmission. For instance, mating systems that are altered due to precocious sexual maturation in what is typically regarded as an intermediate host may impact opportunities for outcrossing. In turn, reproductive traits may evolve to optimize sex allocation. Here, we test the hypothesis that sex allocation evolved toward a more female-biased function in populations of the hermaphroditic digenean trematode Alloglossidium progeneticum that can precociously reproduce in their second hosts. In these precocious populations, parasites are forced to self-fertilize as they remain encysted in their second hosts. In contrast, parasites in obligate three-host populations have more opportunities to outcross in their third host. We found strong support that in populations with precocious development, allocation to male resources was greatly reduced. We also identified a potential phenotypically plastic response in a body size sex allocation relationship that may be driven by the competition for mates. These results emphasize how changes in life cycle patterns that alter mating systems can impact the evolution of reproductive traits in parasites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.