OBJECTIVES: Host gene expression signatures discriminate bacterial and viral infection but have not been translated to a clinical test platform. This study enrolled an independent cohort of patients to describe and validate a first-in-class host response bacterial/viral test. DESIGN: Subjects were recruited from 2006 to 2016. Enrollment blood samples were collected in an RNA preservative and banked for later testing. The reference standard was an expert panel clinical adjudication, which was blinded to gene expression and procalcitonin results. SETTING: Four U.S. emergency departments. PATIENTS: Six-hundred twenty-three subjects with acute respiratory illness or suspected sepsis. INTERVENTIONS: Forty-five–transcript signature measured on the BioFire FilmArray System (BioFire Diagnostics, Salt Lake City, UT) in ~45 minutes. MEASUREMENTS AND MAIN RESULTS: Host response bacterial/viral test performance characteristics were evaluated in 623 participants (mean age 46 yr; 45% male) with bacterial infection, viral infection, coinfection, or noninfectious illness. Performance of the host response bacterial/viral test was compared with procalcitonin. The test provided independent probabilities of bacterial and viral infection in ~45 minutes. In the 213-subject training cohort, the host response bacterial/viral test had an area under the curve for bacterial infection of 0.90 (95% CI, 0.84–0.94) and 0.92 (95% CI, 0.87–0.95) for viral infection. Independent validation in 209 subjects revealed similar performance with an area under the curve of 0.85 (95% CI, 0.78–0.90) for bacterial infection and 0.91 (95% CI, 0.85–0.94) for viral infection. The test had 80.1% (95% CI, 73.7–85.4%) average weighted accuracy for bacterial infection and 86.8% (95% CI, 81.8–90.8%) for viral infection in this validation cohort. This was significantly better than 68.7% (95% CI, 62.4–75.4%) observed for procalcitonin (p < 0.001). An additional cohort of 201 subjects with indeterminate phenotypes (coinfection or microbiology-negative infections) revealed similar performance. CONCLUSIONS: The host response bacterial/viral measured using the BioFire System rapidly and accurately discriminated bacterial and viral infection better than procalcitonin, which can help support more appropriate antibiotic use.
The World Health Organization's Expanded Programme on Immunization has led to a dramatic rise in worldwide vaccination rates over the past 40 years, yet 19.4 million infants remain underimmunized each year. Many of these infants have received at least one vaccine dose but may remain unprotected because they did not receive subsequent booster doses due to logistical challenges. This study aimed to develop injectable controlled release microparticles with kinetics that mimic common vaccine dosing regimens consisting of large antigen doses administered periodically over the course of months in order to eliminate the need for boosters. Sixteen poly(lactic-co-glycolic acid) (PLGA) microsphere formulations containing bovine serum albumin (BSA) as a model vaccine antigen were screened in vitro to determine their respective release kinetics. Three formulations that exhibited desirable pulsatile release profiles were then selected for studying immunogenicity in mice. Two low-dose microsphere formulations induced peak anti-BSA IgG antibody titers of 13.9 ± 1.3 and 13.7 ± 2.2 log2 compared to 15.5 ± 1.5 log2 for a series of three bolus injections delivered at 0, 4, and 8 weeks with an equivalent cumulative dose. Similarly, high-dose formulations induced peak antibody titers that were 16.1 ± 2.1 log2 compared to 17.7 ± 2.2 log2 for controls. All three microparticle formulations studied in vivo induced peak antibody titers that were statistically similar to bolus controls. These results suggest that pulsatile antigen release from polymeric microparticles is a promising approach for single-injection vaccination, which could potentially reduce the logistical burden associated with immunization in the developing world.
BackgroundDistinguishing bacterial and viral respiratory infections is challenging. Novel diagnostics based on differential host gene expression patterns are promising but have not been translated to a clinical platform nor extensively tested. Here, we validate a microarray-derived host response signature and explore performance in microbiology-negative and coinfection cases.MethodsSubjects with acute respiratory illness were enrolled in participating emergency departments. Reference standard was an adjudicated diagnosis of bacterial infection, viral infection, both, or neither. An 87-transcript signature for distinguishing bacterial, viral, and noninfectious illness was measured from peripheral blood using RT-PCR. Performance characteristics were evaluated in subjects with confirmed bacterial, viral, or noninfectious illness. Subjects with bacterial-viral coinfection and microbiologically-negative suspected bacterial infection were also evaluated. Performance was compared to procalcitonin.Findings151 subjects with microbiologically confirmed, single-etiology illness were tested, yielding AUROCs 0•85–0•89 for bacterial, viral, and noninfectious illness. Accuracy was similar to procalcitonin (88% vs 83%, p = 0•23) for bacterial vs. non-bacterial infection. Whereas procalcitonin cannot distinguish viral from non-infectious illness, the RT-PCR test had 81% accuracy in making this determination. Bacterial-viral coinfection was subdivided. Among 19 subjects with bacterial superinfection, the RT-PCR test identified 95% as bacterial, compared to 68% with procalcitonin (p = 0•13). Among 12 subjects with bacterial infection superimposed on chronic viral infection, the RT-PCR test identified 83% as bacterial, identical to procalcitonin. 39 subjects had suspected bacterial infection; the RT-PCR test identified bacterial infection more frequently than procalcitonin (82% vs 64%, p = 0•02).InterpretationThe RT-PCR test offered similar diagnostic performance to procalcitonin in some subgroups but offered better discrimination in others such as viral vs. non-infectious illness and bacterial/viral coinfection. Gene expression-based tests could impact decision-making for acute respiratory illness as well as a growing number of other infectious and non-infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.