Rising anthropogenic CO 2 in the atmosphere is accompanied by an increase in oceanic CO 2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants 2 , most notably those that precipitate calcium carbonate skeletons, such as reef-building corals 3 . Volcanically acidified water at Maug, Commonwealth of the Northern Mariana Islands (CNMI) is equivalent to near-future predictions for what coral reef ecosystems will experience worldwide due to OA. We provide the first chemical and ecological assessment of this unique site and show that acidification-related stress significantly influences the abundance and diversity of coral reef taxa, leading to the often-predicted shift from a coral to an algae-dominated state 4,5 . This study provides field evidence that acidification can lead to macroalgae dominance on reefs.Coral reefs contain the highest concentration of biodiversity in the marine realm, with abundant flora and fauna that form the backbone of complex and dynamic ecosystems 6 . From an anthropocentric standpoint, coral reefs provide valuable goods and services, supporting fisheries and tourism, and protect shorelines from storms 7 . Recently, widespread coral mortality has led to the flattening of reef frameworks and the loss of essential habitat 4 . This trend will be accelerated by ocean acidification (OA), as calcification is impaired, and dissolution is accelerated 8,9 . Furthermore, experimental evidence suggests that OA could enhance the growth 10 and competitive ability of fleshy macroalgae 11 . This OA-induced shift in the competitive balance between corals and algae could exacerbate direct effects of OA on calcifying reef species 12 and lead to ecosystem shifts favouring non-reef-forming algae over coral 4,5 . Understanding the individual responses of taxa to OA, as well as alteration of multi-species assemblages, is therefore critical to predicting ecosystem persistence and managing reef health in an era of global change.At present, much of what is known concerning the impacts of OA on coral reef biota has been laboratory-based experimental work focused on the responses of select taxa 2 . This has been expanded to mesocosm-based studies, allowing manipulation of groups of organisms and investigation of community responses 13 .Although these multi-species experimental studies are vital, they cannot recreate the variability (physical, chemical, biological) of real-world reef systems 14 . In an effort to overcome the limitations of laboratory studies, real-world low-saturation-state (Ω) sites have been investigated. In the eastern Pacific, nutrient and CO 2 -enriched upwelled waters impact coral calcification and the precipitation of carbonate cements, influencing the distribution of reefs 15 . In Mexico, freshwater springs depress Ω, influencing coral calcification and species distributions 16 . In Palau, restricted circulation and biological activity contribute to ...
The environmental conditions in the ocean have long been considered relatively more stable through time compared to the conditions on land. Advances in sensing technologies, however, are increasingly revealing substantial fluctuations in abiotic factors over ecologically and evolutionarily relevant timescales in the ocean, leading to a growing recognition of the dynamism of the marine environment as well as new questions about how this dynamism may influence species' vulnerability to global environmental change. In some instances, the diurnal or seasonal variability in major environmental change drivers, such as temperature, pH and seawater carbonate chemistry, and dissolved oxygen, can exceed the changes expected with continued anthropogenic global change. While ocean global change biologists have begun to experimentally test how variability in environmental conditions mediates species' responses to changes in the mean, the extensive literature on species' adaptations to temporal variability in their environment and the implications of this variabilityfor their evolutionary responses has not been well integrated into the field. Here, we review the physiological mechanisms underlying species' responses to changes in temperature, pCO 2 /pH (and other carbonate parameters), and dissolved oxygen, and discuss what is known about behavioral, plastic, and evolutionary strategies for dealing with variable environments. In addition, we discuss how exposure to variability may influence species' responses to changes in the mean conditions and highlight key research needs for ocean global change biology. K E Y W O R D Sadaptive tracking, bioenergetic/behavioral strategies, manipulative experiments, physiological adaptations, variable environments KROEKER Et al.
Coral reefs are threatened worldwide, and there is a need to develop new approaches to monitor reef health under natural conditions. Because simultaneous measurements of net community production (NCP) and net community calcification (NCC) are used as important indicators of reef health, tools are needed to assess them in situ. Here we present the Benthic Ecosystem and Acidification Measurement System (BEAMS) to provide the first fully autonomous approach capable of sustained, simultaneous measurements of reef NCP and NCC under undisturbed, natural conditions on time scales ranging from tens of minutes to weeks. BEAMS combines the chemical and velocity gradient in the benthic boundary layer to quantify flux from the benthos for a variety of parameters to measure NCP and NCC. Here BEAMS was used to measure these rates from two different sites with different benthic communities on the western reef terrace at Palmyra Atoll for 2 weeks in September 2014. Measurements were made every ∼15 min. The trends in metabolic rates were consistent with the benthic communities between the two sites with one dominated by fleshy organisms and the other dominated by calcifiers (degraded and healthy reefs, respectively). This demonstrates the potential utility of BEAMS as a reef health monitoring tool. NCP and NCC were tightly coupled on time scales of minutes to days, and light was the primary driver for the variability of daily integrated metabolic rates. No correlation between CO2 levels and daily integrated NCC was observed, indicating that NCC at these sites were not significantly affected by CO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.