Marine-based deoxyribonucleic acid (DNA), purified from waste products of the Japanese fishing industry, has recently become a material of interest in photonics applications. Using highly purified DNA, unique processing techniques developed specifically to transform the purified DNA into a biopolymer suitable for optical device fabrication are reported.
Our research in nonlinear optic (NLO) polymer-based electro-optic (EO) modulators has centered on optimizing device performance through the using of polymer cladding layers with higher relative conductivities than the NLO core material. We have demonstrated as much as a 10 times increase in the effective EO coefficient of electrode poled, guest/host NLO polymers, compared to using passive polymer claddings. We have achieved the lowest poling voltage to date for maximum EO coefficient, 300 V, for a two-layer waveguide structure consisting of a 2 µm thick NLO polymer layer and 2 µm thick conductive cladding layer. Optimized polymer cladding materials posessing the desired optical and electromagnetic properties we find need to be balanced with materials processability. In addition to the conventional polymer materials under investigation, a novel material, deoxyribonucleic acid (DNA), derived from salmon sperm, has shown promise in providing both the desired optical and electromagnetic properties, as well as the desired resistance to various solvents used for NLO polymer device fabrication. Our investigation also includes intercalation of fluorescent dyes, photochromic dyes, nonlinear optic chromophores, two-photon dyes, and rare earth compounds into a DNAbased host material and comparing results with poly(methyl methacrylate) (PMMA)-based host materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.