SUMMARY Dorsal and anal fins are median fins located above and below the centre of mass of fishes, each having a moment arm relative to the longitudinal axis. Understanding the kinematics of dorsal and anal fins may elucidate how these fins are used in concert to maintain and change fish body position and yet little is known about the functions of these fins. Using three synchronized high-speed cameras (500 frames s–1) we studied the three-dimensional kinematics of dorsal and anal fins during steady swimming(0.5–2.5 TL s–1, where TL=total length) and during slow speed maneuvers (0.5 TLs–1). By digitizing points along every other fin ray in the soft-rayed portion of the fins we were able to determine not only the movement of the fin surface but also the curvature of individual fin rays and the resulting fin surface shape. We found that dorsal and anal fins begin oscillating, in phase, at steady swimming speeds above 1.0 TLs–1 and that maximum lateral displacement of the trailing edge of the fins as well as fin area increase with increasing steady swimming speed. Differences in area, lateral displacement and moment arm between the dorsal and anal fin suggest that dorsal and anal fins produce balancing torques during steady swimming. During maneuvers, fin area is maximized and mean lateral excursion of both fins is greater than during steady swimming,with large variation among maneuvers. Fin surface shape changes dramatically during maneuvers. At any given point in time the spanwise (base to tip)curvature along fin rays can differ between adjacent rays, suggesting that fish have a high level of control over fin surface shape. Also, during maneuvers the whole surface of both dorsal and anal fins can be bent without individual fin rays exhibiting significant curvature.
The origin of tetrapods from their fish antecedents, approximately 400 million years ago, was coupled with the origin of terrestrial locomotion and the evolution of supporting limbs. Polypterus is a member of the basal-most group of ray-finned fish (actinopterygians) and has many plesiomorphic morphologies that are comparable to elpistostegid fishes, which are stem tetrapods. Polypterus therefore serves as an extant analogue of stem tetrapods, allowing us to examine how developmental plasticity affects the 'terrestrialization' of fish. We measured the developmental plasticity of anatomical and biomechanical responses in Polypterus reared on land. Here we show the remarkable correspondence between the environmentally induced phenotypes of terrestrialized Polypterus and the ancient anatomical changes in stem tetrapods, and we provide insight into stem tetrapod behavioural evolution. Our results raise the possibility that environmentally induced developmental plasticity facilitated the origin of the terrestrial traits that led to tetrapods.
SUMMARY Recent kinematic and hydrodynamic studies on fish median fins have shown that dorsal fins actively produce jets with large lateral forces. Because of the location of dorsal fins above the fish's rolling axis, these lateral forces, if unchecked, would cause fish to roll. In this paper we examine the hydrodynamics of trout anal fin function and hypothesize that anal fins,located below the fish's rolling axis, produce similar jets to the dorsal fin and help balance rolling torques during swimming. We simultaneously quantify the wake generated by dorsal and anal fins in brook trout by swimming fish in two horizontal light sheets filmed by two synchronized high speed cameras during steady swimming and manoeuvring. Six major conclusions emerge from these experiments. First, anal fins produce lateral jets to the same side as dorsal fins,confirming the hypothesis that anal fins produce fluid jets that balance those produced by dorsal fins. Second, in contrast to previous work on sunfish,neither dorsal nor anal fins produce significant thrust during steady swimming; flow leaves the dorsal and anal fins in the form of a shear layer that rolls up into vortices similar to those seen in steady swimming of eels. Third, dorsal and anal fin lateral jets are more coincident in time than would be predicted from simple kinematic expectations; shape, heave and pitch differences between fins, and incident flow conditions may account for the differences in timing of jet shedding. Fourth, relative force and torque magnitudes of the anal fin are larger than those of the dorsal fin; force differences may be due primarily to a larger span and a more squarely shaped trailing edge of the anal fin compared to the dorsal fin; torque differences are also strongly influenced by the location of each fin relative to the fish's centre of mass. Fifth, flow is actively modified by dorsal and anal fins resulting in complex flow patterns surrounding the caudal fin. The caudal fin does not encounter free-stream flow, but rather moves through incident flow greatly altered by the action of dorsal and anal fins. Sixth, trout anal fin function differs from dorsal fin function; although dorsal and anal fins appear to cooperate functionally, there are complex interactions between other fins and free stream perturbations that require independent dorsal and anal fin motion and torque production to maintain control of body position.
The locomotor performance of dogfish during escape responses was observed by means of high-speed video. Dogfish show C-type escape responses that are comparable with those shown previously in teleosts. Dogfish show high variability of turning rates of the anterior part of the body (head to centre of mass), i.e. with peak values from 434 to 1023·deg.·s -1 . We suggest that this variability may be due to the presence of two types of escape manoeuvres, i.e. responses with high and low turning rates, as previously found in a teleost species. Fast responses (i.e. with high maximum turning rates, ranging between 766 and 1023·deg.·s -1 ) showed significantly higher locomotor performance than slow responses (i.e. with low maximum turning rates, ranging between 434 and 593·deg.·s -1 ) in terms of distance covered, speed and acceleration, although no differences were found in the turning radius of the centre of mass during the escape manoeuvres. The existence of two types of escape responses would have implications in terms of both neural control and muscular activation patterns. When compared with literature data for the locomotor performance of bony fishes, dogfish showed relatively low speed and acceleration, comparable turning rates and a turning radius that is in the low part of the range when compared with teleosts, indicating relatively high manoeuvrability. The locomotor performance observed in dogfish is consistent with their morphological characteristics: (1) low locomotor performance associated with low thrust developed by their relatively small posterior depth of section and (2) relatively high manoeuvrability associated with their high flexibility.
Adult Pacific salmon (Oncorhynchus spp.) depend on energy reserves to complete their upriver spawning migration. Little is known about how flow patterns and bank characteristics affect energetics or how species differ in reach-specific energy use. In 1999, electromyogram (EMG) radiotelemetry was used to describe activity levels and estimate energy use of 12 adult pink salmon (Oncorhynchus gorbuscha) during their upstream migration in a 7-km section of the Fraser River Canyon. Data collected previously on sockeye salmon (Oncorhynchus nerka) in the same study area provided a species comparison. We could not identify any strong differences in energetics between species. Although sex had some influence, reach characteristics were the primary factors affecting migration activity and energetics. Fish increased their activity levels when they migrated through reaches constricted by islands or gravel bars compared with nonconstricted reaches. The former contained higher velocity currents and more complex hydraulic conditions than the latter. Two behavioural responses, with similar energetic consequences, occurred in constricted reaches. Either fish swam slowly and took more time, presumably searching for lower velocity areas for migration thus increasing passage time, or they swam quickly through higher velocity flow fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.