Biologically derived fuels are viable alternatives to traditional fossil fuels, and microalgae are a particularly promising source, but improvements are required throughout the production process to increase productivity and reduce cost. Metabolic engineering to increase yields of biofuel-relevant lipids in these organisms without compromising growth is an important aspect of advancing economic feasibility. We report that the targeted knockdown of a multifunctional lipase/phospholipase/acyltransferase increased lipid yields without affecting growth in the diatom Thalassiosira pseudonana. Antisense-expressing knockdown strains 1A6 and 1B1 exhibited wild-type-like growth and increased lipid content under both continuous light and alternating light/dark conditions. Strains 1A6 and 1B1, respectively, contained 2.4-and 3.3-fold higher lipid content than wild-type during exponential growth, and 4.1-and 3.2-fold higher lipid content than wild-type after 40 h of silicon starvation. Analyses of fatty acids, lipid classes, and membrane stability in the transgenic strains suggest a role for this enzyme in membrane lipid turnover and lipid homeostasis. These results demonstrate that targeted metabolic manipulations can be used to increase lipid accumulation in eukaryotic microalgae without compromising growth. metabolism | RNAi | algal biofuel | targeted manipulation | triacylglycerol
Summary
Diatoms are one of the most productive and successful photosynthetic taxa on Earth and possess attributes such as rapid growth rates and production of lipids, making them candidate sources of renewable fuels. Despite their significance, few details of the mechanisms used to regulate growth and carbon metabolism are currently known, hindering metabolic engineering approaches to enhance productivity.To characterize the transcript level component of metabolic regulation, genome‐wide changes in transcript abundance were documented in the model diatom Thalassiosira pseudonana on a time‐course of silicon starvation. Growth, cell cycle progression, chloroplast replication, fatty acid composition, pigmentation, and photosynthetic parameters were characterized alongside lipid accumulation.Extensive coordination of large suites of genes was observed, highlighting the existence of clusters of coregulated genes as a key feature of global gene regulation in T. pseudonana. The identity of key enzymes for carbon metabolic pathway inputs (photosynthesis) and outputs (growth and storage) reveals these clusters are organized to synchronize these processes.Coordinated transcript level responses to silicon starvation are probably driven by signals linked to cell cycle progression and shifts in photophysiology. A mechanistic understanding of how this is accomplished will aid efforts to engineer metabolism for development of algal‐derived biofuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.