Non-resonant second harmonic generation phase and amplitude measurements obtained from the silica:water interface at varying pH and 0.5 M ionic strength point to the existence of a nonlinear susceptibility term, which we call " ! (#) , that is associated with a 90° phase shift.
The electric double layer governs the processes of all charged surfaces in aqueous solutions; however, elucidating the structure of the water molecules is challenging for even the most advanced spectroscopic techniques. Here, we present the individual Stern layer and diffuse layer OH stretching spectra at the silica/water interface in the presence of NaCl over a wide pH range using a combination of vibrational sum frequency generation spectroscopy, heterodyned second harmonic generation, and streaming potential measurements. We find that the Stern layer water molecules and diffuse layer water molecules respond differently to pH changes: unlike the diffuse layer, whose water molecules remain net-oriented in one direction, water molecules in the Stern layer flip their net orientation as the solution pH is reduced from basic to acidic. We obtain an experimental estimate of the non-Gouy−Chapman (Stern) potential contribution to the total potential drop across the insulator/electrolyte interface and discuss it in the context of dipolar, quadrupolar, and higher order potential contributions that vary with the observed changes in the net orientation of water in the Stern layer. Our findings show that a purely Gouy−Chapman (Stern) view is insufficient to accurately describe the electrical double layer of aqueous interfaces.
Second harmonic generation amplitude and phase measurements are acquired in real time from fused silica:water interfaces that are subjected to ionic strength transitions conducted at pH 5.8. In conjunction with atomistic modeling, we identify correlations between structure in the Stern layer, encoded in the total second-order nonlinear susceptibility, 𝜒 !"! ($) , and in the diffuse layer, encoded in the product of 𝜒 !"! ($) and the total interfacial potential, 𝛷(0) !"! .𝜒 !"! ($) : 𝛷(0) !"! correlation plots indicate that the dynamics in the Stern and diffuse layers are decoupled from one another under some conditions (large change in ionic strength), while they change in lockstep under others (smaller change in ionic strength) as the ionic strength in the aqueous bulk solution varies. The quantitative structural and electrostatic information obtained also informs on the molecular origin of hysteresis in ionic strength cycling over fused silica.Atomistic simulations suggest a prominent role of contact ion pairs (as opposed to solventseparated ion pairs) in the Stern layer. Those simulations also indicate that net water alignment is limited to the first 2 nm from the interface, even at 0 M ionic strength, highlighting water's polarization as an important contributor to nonlinear optical signal generation.
Water is vital to many biochemical processes and is necessary for driving many fundamental interactions of cell membranes with their external environments, yet it is difficult to probe the membrane/water interface directly and without the use of external labels. Here, we employ vibrational sum frequency generation (SFG) spectroscopy to understand the role of interfacial water molecules above bilayers formed from zwitterionic (phosphatidylcholine, PC) and anionic (phosphatidylglycerol, PG, and phosphatidylserine, PS) lipids as they are exposed to
The second-order nonlinear susceptibility, c (2) , in the Stern layer, and the total interfacial potential drop, F(0)tot, across the oxide:water interface are estimated from SHG amplitude and phase measurements for divalent cations (Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ ) at the silica:water interface at pH 5.8 and various ionic strengths. We find that interfacial structure and total potential depend strongly on ion valency. We observe statistically significant differences between the experimentally determined χ (2) value for NaCl and that of the alkali earth series, but smaller differences between ions of the same valency in that series. These differences are particularly pronounced at intermediate salt concentrations, which we attribute to the influence of hydration structure in the Stern layer. Furthermore, we corroborate the differences by examining the effects of anion substitution (SO4 2for Cl -). Finally, we identify that hysteresis in measuring the reversibility of ion adsorption and desorption at fused silica in forward and reverse titrations manifests itself both in Stern layer structure and in total interfacial potential for some of the salts, most notable CaCl2 and MgSO4, but less so for BaCl2 and NaCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.