National greenhouse gas inventories (NGHGIs) will play an increasingly important role in tracking country progress against United Nations (UN) Paris Agreement commitments. Yet uncertainty in land use, land use change, and forestry (LULUCF) NGHGHI estimates may undermine international confidence in emission reduction claims, particularly for countries that expect forests and agriculture to contribute large near-term GHG reductions. In this paper, we propose an analytical framework for implementing the uncertainty provisions of the UN Paris Agreement Enhanced Transparency Framework, with a view to identifying the largest sources of LULUCF NGHGI uncertainty and prioritizing methodological improvements. Using the USA as a case study, we identify and attribute uncertainty across all US NGHGI LULUCF “uncertainty elements” (inputs, parameters, models, and instances of plot-based sampling) and provide GHG flux estimates for omitted inventory categories. The largest sources of uncertainty are distributed across LULUCF inventory categories, underlining the importance of sector-wide analysis: forestry (tree biomass sampling error; tree volume and specific gravity allometric parameters; soil carbon model), cropland and grassland (DayCent model structure and inputs), and settlement (urban tree gross to net carbon sequestration ratio) elements contribute over 90% of uncertainty. Net emissions of 123 MMT CO2e could be omitted from the US NGHGI, including Alaskan grassland and wetland soil carbon stock change (90.4 MMT CO2), urban mineral soil carbon stock change (34.7 MMT CO2), and federal cropland and grassland N2O (21.8 MMT CO2e). We explain how these findings and other ongoing research can support improved LULUCF monitoring and transparency.
Delivering emission reductions consistent with a 1.5°C trajectory will require innovative public financial instruments designed to mobilize trillions of dollars of low-carbon private investment. Traditional public subsidy instruments such as grants and concessional loans, while critical to supporting nascent technologies or high-capital-cost projects, do not provide the price signals required to shift private investments towards low-carbon alternatives at a scale. Programmes that underwrite the value of emission reductions using auctioned price floors provide price certainty over long time horizons, thus improving the cost-effectiveness of limited public funds while also catalysing private investment.Taking lessons from the World Bank's Pilot Auction Facility, which supports methane and nitrous oxide mitigation projects, and the United Kingdom's Contracts for Difference programme, which supports renewable energy deployment, we show that auctioned price floors can be applied to a variety of sectors with greater efficiency and scalability than traditional subsidy instruments. We explore how this new class of instrument can enhance the cost-effectiveness of carbon pricing and complementary policies needed to achieve a 1.5°C outcome, including through large-scale adoption by the Green Climate Fund and other international and domestic climate finance vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.