Sponges are important for maintaining ecosystem function and integrity of marine and freshwater benthic communities worldwide. Despite this, there has been no assessment of their current global conservation status. We assessed their status, accounting for the distribution of research effort; patterns of temporal variation in sponge populations and assemblages; the number of sponges on threatened species lists; and the impact of environmental pressures. Sponge research effort has been variable; marine sponges in the northeastern Atlantic and Mediterranean and freshwater sponges in Europe and North America have received the most attention. Although sponge abundance has increased in some locations since 1990, these were typically on coral reefs, in response to declines in other benthic organisms, and restricted to a few species. Few data were available on temporal trends in freshwater sponge abundance. Despite over 8500 described sponge species, only 20 are on threatened species lists, and all are marine species from the northeastern Atlantic and Mediterranean. Of the 202 studies identified, the effects of temperature, suspended sediment, substratum loss, and microbial pathogens have been studied the most intensively for marine sponges, although responses appear to be variable. There were 20 studies examining environmental impacts on freshwater sponges, and most of these were on temperature and heavy metal contamination. We found that most sponges do not appear to be threatened globally. However, little information is available for most species and more data are needed on the impacts of anthropogenic-related pressures. This is a critical information gap in understanding sponge conservation status.
Sponges are a major component of benthic ecosystems across the world and fulfil a number of important functional roles. However, despite their importance, there have been few attempts to compare sponge assemblage structure and ecological functions across large spatial scales. In this review, we examine commonalities and differences between shallow water (<100 m) sponges at bioregional (15 bioregions) and macroregional (tropical, Mediterranean, temperate, and polar) scales, to provide a more comprehensive understanding of sponge ecology. Patterns of sponge abundance (based on density and area occupied) were highly variable, with an average benthic cover between ~1 and 30%. Sponges were generally found to occupy more space (percentage cover) in the Mediterranean and polar macroregions, compared to temperate and tropical macroregions, although sponge densities (sponges m–2) were highest in temperate bioregions. Mean species richness standardised by sampling area was similar across all bioregions, except for a few locations that supported very high small‐scale biodiversity concentrations. Encrusting growth forms were generally the dominant sponge morphology, with the exception of the Tropical West Atlantic, where upright forms dominated. Annelids and Arthropods were the most commonly reported macrofauna associated with sponges across bioregions. With respect to reproduction, there were no patterns in gametic development (hermaphroditism versus gonochorism), although temperate, tropical, and polar macroregions had an increasingly higher percentage of viviparous species, respectively, with viviparity being the sole gamete development mechanism reported for polar sponges to date. Seasonal reproductive timing was the most common in all bioregions, but continuous timing was more common in the Mediterranean and tropical bioregions compared to polar and temperate bioregions. We found little variation across bioregions in larval size, and the dominant larval type across the globe was parenchymella. No pattens among bioregions were found in the limited information available for standardised respiration and pumping rates. Many organisms were found to predate sponges, with the abundance of sponge predators being higher in tropical systems. While there is some evidence to support a higher overall proportion of phototrophic species in the Tropical Austalian bioregion compared to the Western Atlantic, both also have large numbers of heterotrophic species. Sponges are important spatial competitors across all bioregions, most commonly being reported to interact with anthozoans and algae. Even though the available information was limited for many bioregions, our analyses demonstrate some differences in sponge traits and functions among bioregions, and among macroregions. However, we also identified similarities in sponge assemblage structure and function at global scales, likely reflecting a combination of regional‐ and local‐scale biological and physical processes affecting sponge assemblages, along with common ancestry. Fi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.