Azobenzene is a prototype molecule with potential applications in molecular switches, solar thermal batteries, sensors, photoresponsive membranes, molecular electronics, data storage, and nonlinear optics. Photo and thermal isomerization pathways exhibit different charge-transfer character and dipole moments, implying that the use of electric fields can be used to modulate the reactivity of azobenzene. This article examines the differential effect of orientated electric fields on the rotation and inversion thermal and photoisomerization pathways of azobenzene to explore the feasibility of using electric fields in the design of azobenzene-based molecular devices. Our findings demonstrate that the application of orientated electric fields modifies the accessibility of the S 0 /S 1 seam of electronic degeneracy, as well as changes the energetically favored relaxation pathway in the branching space to yield different photoproducts. In addition, we observed strong-field dipole-inversion effects that cause a topographical change in the response of the potential energy surface to the applied field and can result in geometric minima that do not exist under field-free conditions. On the S 0 surface, transition barriers can be modified on the order of ±10 kcal mol −1 , enabling control of thermal isomerization rates.
Reliable global elucidation of (subsets of) self-consistent field solutions is required for continued development and application of computational approaches that utilize these solutions as reference wavefunctions. We report the derivation and implementation of a stochastic approach to perform global elucidation of self-consistent field solutions by exploiting the connection between global optimization and global elucidation problems. We discuss the design of the algorithm through combining basin-hopping search algorithms with a Lie algebraic approach to linearize self-consistent field solution space, while also allowing preservation of desired spin-symmetry properties of the wavefunction. The performance of the algorithm is demonstrated on minimal basis C 2v H4 due to its use as a model system for global self-consistent field solution exploration algorithms. Subsequently, we show that the model is capable of successfully identifying low-lying self-consistent solutions of benzene and NO2 with polarized double-zeta and triple-zeta basis sets and examine the properties of these solutions.
The use of projection-after-variation double-hybrid density functional theory is proposed and examined as a difference method for the calculation of excited states. The strengths and weaknesses of the proposed method are discussed with particular reference to connections with linear response coupled-cluster theory. Vertical excitation energies are computed for the 28 molecule benchmark of Schreiber and co-workers in order to compare how the model performs with linear response coupled-cluster theories and multireference perturbation theory. The findings of this study show that the proposed method can achieve standard deviations in the error of computed vertical excitation energies compared to complete active space second-order perturbation theory of similar size to linear response coupled-cluster theories.
The nonorthogonal active space decomposition (NO-ASD) methodology is proposed for describing systems containing multiple correlation mechanisms. NO-ASD partitions the wave function by a correlation mechanism, such that the interactions between different correlation mechanisms are treated with an effective Hamiltonian approach, while interactions between correlated orbitals in the same correlation mechanism are treated explicitly. As a result, the determinant expansion scales polynomially with the number of correlation mechanisms rather than exponentially, which significantly reduces the factorial scaling associated with the size of the correlated orbital space. Despite the nonorthogonal framework of NO-ASD, the approach can take advantage of computational efficient matrix element evaluation when performing nonorthogonal coupling of orthogonal determinant expansions. In this work, we introduce and examine the NO-ASD approach in comparison to complete active space methods to establish how the NO-ASD approach reduces the problem dimensionality and the extent to which it affects the amount of correlation energy recovered. Calculations are performed on ozone, nickel–acetylene, and isomers of μ-oxo dicopper ammonia.
Difference approaches to the study of excited states have undergone a renaissance in recent years, with the development of a plethora of algorithms for locating self-consistent field approximations to excited states. Density functional theory is likely to offer the best balance of cost and accuracy for difference approaches, and yet there has been little investigation of how the parametrization of density functional approximations affects performance. In this work, we aim to explore the role of the global Hartree–Fock exchange parameter in tuning accuracy of different excitation types within the framework of the recently introduced difference projected double-hybrid density functional theory approach and contrast the performance with conventional time-dependent double-hybrid density functional theory. Difference projected double-hybrid density functional theory was demonstrated to give vertical excitation energies with average error and standard deviation with respect to multireference perturbation theory comparable to more expensive linear-response coupled cluster approaches (J. Chem. Phys.2020153074103). However, despite benchmarking of local excitations, there has been no investigation of the methods performance for charge transfer or Rydberg excitations. In this work we report a new benchmark of charge transfer, Rydberg, and local excited state vertical excitation energies and examine how the exact Hartree–Fock exchange affects the benchmark performance to provide a deeper understanding of how projection and nonlocal correlation balance differing sources of error in the ground and excited states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.