Since emotions are expressed through a combination of verbal and nonverbal channels, a joint analysis of speech and gestures is required to understand expressive human communication. To facilitate such investigations, this paper describes a new corpus named the ''interactive emotional dyadic motion capture database'' (IEMOCAP), collected by the Speech Analysis and Interpretation Laboratory (SAIL) at the University of Southern California (USC). This database was recorded from ten actors in dyadic sessions with markers on the face, head, and hands, which provide detailed information about their facial expressions and hand movements during scripted and spontaneous spoken communication scenarios. The actors performed selected emotional scripts and also improvised hypothetical scenarios designed to elicit specific types of emotions (happiness, anger, sadness, frustration and neutral state). The corpus contains approximately 12 h of data. The detailed motion capture information, the interactive setting to elicit authentic emotions, and the size of the database make this corpus a valuable addition to the existing databases in the community for the study and modeling of multimodal and expressive human communication.
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Emotion expression is a complex process involving dependencies based on time, speaker, context, mood, personality, and culture. Emotion classification algorithms designed for real-world application must be able to interpret the emotional content of an utterance or dialog given the modulations resulting from these and other dependencies. Algorithmic development often rests on the assumption that the input emotions are uniformly recognized by a pool of evaluators. However, this style of consistent prototypical emotion expression often does not exist outside of a laboratory environment. This paper presents methods for interpreting the emotional content of non-prototypical utterances. These methods include modeling across multiple time-scales and modeling interaction dynamics between interlocutors. This paper recommends classifying emotions based on emotional profiles, or soft-labels, of emotion expression rather than relying on just raw acoustic features or categorical hard labels. Emotion expression is both interactive and dynamic. Consequently, to accurately recognize emotional content, these aspects must be incorporated during algorithmic design to improve classification performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.