Highlights d 10 h time-restricted eating (TRE) in metabolic syndrome (MetS) promotes weight loss d TRE in MetS reduces waist circumference, percent body fat, and visceral fat d TRE in MetS lowers blood pressure, atherogenic lipids, and glycated hemoglobin d Benefits of TRE are ''add-ons'' to statin and anti-hypertensive medications
Objective: In contrast to intentionally restricting energy intake, restricting the eating window may be an option for treating obesity. By comparing time-restricted eating (TRE) with an unrestricted (non-TRE) control, it was hypothesized that TRE facilitates weight loss, alters body composition, and improves metabolic measures. Methods: Participants (17 women and 3 men; mean [SD]: 45.5 [12.1] years; BMI 34.1 [7.5] kg/m 2 ) with a prolonged eating window (15.4 [0.9] hours) were randomized to TRE (n = 11: 8-hour window, unrestricted eating within window) versus non-TRE (n = 9: unrestricted eating) for 12 weeks. Weight, body composition (dual x-ray absorptiometry), lipids, blood pressure, 2-hour oral glucose tolerance, 2-week continuous glucose monitoring, and 2-week physical activity (actigraphy assessed) were measured during the pre-and end-intervention periods. Results: The TRE group significantly reduced the eating window (endintervention window: 9.9 [2.0] hours) compared with the non-TRE group (end-intervention window: 15.1 [1.1] hours) (P < 0.01). Compared with non-TRE, TRE decreased the number of eating occasions, weight, lean mass, and visceral fat (all P ≤ 0.05). Compared with preintervention measures, the TRE group reduced the number of eating occasions (−21.9% [30.1%]) and reduced weight (−3.7% [1.8%]), fat mass (−4% [2.9%]), lean mass (−3.0% [2.7%]), and visceral fat (−11.1% [13.4%]) (all P ≤ 0.05). Physical activity and metabolic measures remained unchanged. Conclusions: In the setting of a randomized trial, TRE presents a simplified view of food intake that reduces weight.Obesity (2020) 28, 860-869.
Objective This study aimed to assess the effects of 9‐hour time‐restricted feeding (TRF), early (TRFe) or delayed (TRFd), on glucose tolerance in men at risk for type 2 diabetes. Methods Fifteen men (age 55 ± 3 years, BMI 33.9 ± 0.8 kg/m2) wore a continuous glucose monitor for 7 days of baseline assessment and during two 7‐day TRF conditions. Participants were randomized to TRFe (8 am to 5 pm) or TRFd (12 pm to 9 pm), separated by a 2‐week washout phase. Glucose, insulin, triglycerides, nonesterified fatty acids, and gastrointestinal hormone incremental areas under the curve were calculated following a standard meal on days 0 and 7 at 8 am (TRFe) or 12 pm (TRFd). Results TRF improved glucose tolerance as assessed by a reduction in glucose incremental area under the curve (P = 0.001) and fasting triglycerides (P = 0.003) on day 7 versus day 0. However, there were no mealtime by TRF interactions in any of the variables examined. There was also no effect of TRF on fasting and postprandial insulin, nonesterified fatty acids, or gastrointestinal hormones. Mean fasting glucose by continuous glucose monitor was lower in TRFe (P = 0.02) but not TRFd (P = 0.17) versus baseline, but there was no difference between TRF conditions. Conclusions While only TRFe lowered mean fasting glucose, TRF improved glycemic responses to a test meal in men at risk for type 2 diabetes regardless of the clock time that TRF was initiated.
Molecular clocks are present in almost every cell to anticipate daily recurring and predictable changes, such as rhythmic nutrient availability, and to adapt cellular functions accordingly. At the same time, nutrient-sensing pathways can respond to acute nutrient imbalance and modulate and orient metabolism so cells can adapt optimally to a declining or increasing availability of nutrients. Organismal circadian rhythms are coordinated by behavioral rhythms such as activity–rest and feeding–fasting cycles to temporally orchestrate a sequence of physiological processes to optimize metabolism. Basic research in circadian rhythms has largely focused on the functioning of the self-sustaining molecular circadian oscillator, while research in nutrition science has yielded insights into physiological responses to caloric deprivation or to specific macronutrients. Integration of these two fields into actionable new concepts in the timing of food intake has led to the emerging practice of time-restricted eating. In this paradigm, daily caloric intake is restricted to a consistent window of 8–12 h. This paradigm has pervasive benefits on multiple organ systems.
Circadian rhythms optimize physiology and health by temporally coordinating cellular function, tissue function, and behavior. These endogenous rhythms dampen with age and thus compromise temporal coordination. Feeding-fasting patterns are an external cue that profoundly influence the robustness of daily biological rhythms. Erratic eating patterns can disrupt the temporal coordination of metabolism and physiology leading to chronic diseases that are also characteristic of aging. However, sustaining a robust feeding-fasting cycle, even without altering nutrition quality or quantity, can prevent or reverse these chronic diseases in experimental models. In humans, epidemiological studies have shown erratic eating patterns increase the risk of disease, whereas sustained feeding-fasting cycles, or prolonged overnight fasting, is correlated with protection from breast cancer. Therefore, optimizing the timing of external cues with defined eating patterns can sustain a robust circadian clock, which may prevent disease and improve prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.