Biology education research (BER) is a growing field, as evidenced by the increasing number of publications in CBE—Life Sciences Education ( LSE) and expanding participation at the Society for the Advancement of Biology Education Research (SABER) annual meetings. To facilitate an introspective and reflective discussion on how research within LSE and at SABER has matured, we conducted a content analysis of LSE research articles ( n = 339, from 2002 to 2015) and SABER abstracts ( n = 652, from 2011 to 2015) to examine three related intraresearch parameters: research questions, study contexts, and methodologies. Qualitative data analysis took a combination of deductive and inductive approaches, followed by statistical analyses to determine the correlations among different parameters. We identified existing research questions, study contexts, and methodologies in LSE articles and SABER abstracts and then compared and contrasted these parameters between the two data sources. LSE articles were most commonly guided by descriptive research questions, whereas SABER abstracts were most commonly guided by causal research questions. Research published in LSE and presented at SABER both prioritize undergraduate classrooms as the study context and quantitative methodologies. In this paper, we examine these research trends longitudinally and discuss implications for the future of BER as a scholarly field.
IntroductionSoft tissue calcification, including both dystrophic calcification and heterotopic ossification, may occur following injury. These lesions have variable fates as they are either resorbed or persist. Persistent soft tissue calcification may result in chronic inflammation and/or loss of function of that soft tissue. The molecular mechanisms that result in the development and maturation of calcifications are uncertain. As a result, directed therapies that prevent or resorb soft tissue calcifications remain largely unsuccessful. Animal models of post-traumatic soft tissue calcification that allow for cost-effective, serial analysis of an individual animal over time are necessary to derive and test novel therapies. We have determined that a cardiotoxin-induced injury of the muscles in the posterior compartment of the lower extremity represents a useful model in which soft tissue calcification develops remote from adjacent bones, thereby allowing for serial analysis by plain radiography. The purpose of the study was to design and validate a method for quantifying soft tissue calcifications in mice longitudinally using plain radiographic techniques and an ordinal scoring system.MethodsMuscle injury was induced by injecting cardiotoxin into the posterior compartment of the lower extremity in mice susceptible to developing soft tissue calcification. Seven days following injury, radiographs were obtained under anesthesia. Multiple researchers applied methods designed to standardize post-image processing of digital radiographs (N = 4) and quantify soft tissue calcification (N = 6) in these images using an ordinal scoring system. Inter- and intra-observer agreement for both post-image processing and the scoring system used was assessed using weighted kappa statistics. Soft tissue calcification quantifications by the ordinal scale were compared to mineral volume measurements (threshold 450.7mgHA/cm3) determined by μCT. Finally, sample-size calculations necessary to discriminate between a 25%, 50%, 75%, and 100% difference in STiCSS score 7 days following burn/CTX induced muscle injury were determined.ResultsPrecision analysis demonstrated substantial to good agreement for both post-image processing (κ = 0.73 to 0.90) and scoring (κ = 0.88 to 0.93), with low inter- and intra-observer variability. Additionally, there was a strong correlation in quantification of soft tissue calcification between the ordinal system and by mineral volume quantification by μCT (Spearman r = 0.83 to 0.89). The ordinal scoring system reliably quantified soft tissue calcification in a burn/CTX-induced soft tissue calcification model compared to non-injured controls (Mann-Whitney rank test: P = 0.0002, ***). Sample size calculations revealed that 6 mice per group would be required to detect a 50% difference in STiCSS score with a power of 0.8. Finally, the STiCSS was demonstrated to reliably quantify soft tissue calcification [dystrophic calcification and heterotopic ossification] by radiographic analysis, independent of the histopathologi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.