The extent of sex differences in childhood language development is unclear. We conducted a systematic literature review synthesizing results from studies examining sex differences in brain structure and function relevant to language development during childhood. We searched PubMed and Scopus databases, and this returned a total of 46 published studies meeting criteria for inclusion that directly examined sex differences in brain development relevant to language function in children. The results indicate that: (a) sex differences in brain structure or function do not necessarily lead to differences in language task performance; (b) evidence for sex differences in brain and language development are limited; (c) when present, sex differences often interact with a variety of factors such as age and task. Overall, the magnitude of sexual dimorphism of brain developmental trajectories associated with language is not as significant as previously thought. Sex differences were found, however, in studies employing tighter age ranges. This suggests that sex differences may be more prominent during certain developmental stages but are negligible in other stages, likely due to different rates of maturation between the sexes. More research is needed to improve our understanding of how sex differences may arise due to the influence of sex hormones and developmental stages, and how these differences may lead to differences in various language task performance. These studies are expected to provide normative information that may be used in studies examining neurodevelopmental disorders that frequently affect more males than females, and also often affect language development.
Stuttering is a neurodevelopmental disorder that affects the smooth flow of speech production. Stuttering onset occurs during a dynamic period of development when children first start learning to formulate sentences. Although most children grow out of stuttering naturally, ∼1% of all children develop persistent stuttering that can lead to significant psychosocial consequences throughout one's life. To date, few studies have examined neural bases of stuttering in children who stutter, and even fewer have examined the basis for natural recovery versus persistence of stuttering. Here we report the first study to conduct surface-based analysis of the brain morphometric measures in children who stutter. We used FreeSurfer to extract cortical size and shape measures from structural MRI scans collected from the initial year of a longitudinal study involving 70 children (36 stuttering, 34 controls) in the 3-10-year range. The stuttering group was further divided into two groups: persistent and recovered, based on their later longitudinal visits that allowed determination of their eventual clinical outcome. A region of interest analysis that focused on the left hemisphere speech network and a whole-brain exploratory analysis were conducted to examine group differences and group × age interaction effects. We found that the persistent group could be differentiated from the control and recovered groups by reduced cortical thickness in left motor and lateral premotor cortical regions. The recovered group showed an age-related decrease in local gyrification in the left medial premotor cortex (supplementary motor area and and pre-supplementary motor area). These results provide strong evidence of a primary deficit in the left hemisphere speech network, specifically involving lateral premotor cortex and primary motor cortex, in persistent developmental stuttering. Results further point to a possible compensatory mechanism involving left medial premotor cortex in those who recover from childhood stuttering.
Affecting 5% of all preschool-aged children, developmental stuttering -- also called childhood onset fluency disorder-- is a complex, multifactorial neurodevelopmental disorder characterized by frequent disruption of the fluent flow of speech. Over the past two decades, neuroimaging studies of both children and adults who stutter have begun to provide significant insights into the neurobiological bases of stuttering. This review highlights convergent findings from this body of literature with a focus on functional and structural neuroimaging results that are supported by theoretically-driven neurocomputational models of speech production. Updated views on possible mechanisms of stuttering onset and persistence, and perspectives on promising areas for future research into the mechanisms of stuttering are discussed.
This study supports the view that stuttering is a complex neurodevelopmental disorder and provides comprehensive brain network maps that substantiate past theories emphasizing the importance of considering situational, emotional, attentional and linguistic factors in explaining the basis for stuttering onset, persistence, and recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.