We demonstrate improved operation of exchange-coupled semiconductor quantum dots by substantially reducing the sensitivity of exchange operations to charge noise. The method involves biasing a double dot symmetrically between the charge-state anticrossings, where the derivative of the exchange energy with respect to gate voltages is minimized. Exchange remains highly tunable by adjusting the tunnel coupling. We find that this method reduces the dephasing effect of charge noise by more than a factor of 5 in comparison to operation near a charge-state anticrossing, increasing the number of observable exchange oscillations in our qubit by a similar factor. Performance also improves with exchange rate, favoring fast quantum operations. DOI: 10.1103/PhysRevLett.116.110402 Gated semiconductor quantum dots are a leading candidate for quantum information processing due to their high speed, density, and compatibility with mature fabrication technologies [1,2]. Quantum dots are formed by spatially confining individual electrons using a combination of material interfaces and nanoscale metallic gates. Although several quantized degrees of freedom are available [3][4][5], the electron spin is often employed as a qubit due to its long coherence time [6,7]. Spin-spin coupling may be controlled via the kinetic exchange interaction, which has the benefit of short range and electrical controllability. Numerous qubit proposals use exchange, including as a two-qubit gate between ESR-addressed spins [8], a single axis of control in a two dot system also employing gradient magnetic fields [9] or spin-orbit couplings [10], or as a means of full qubit control on a restricted subspace of at least three coupled spins [11][12][13]. However, since exchange relies on electron motion, it is susceptible to electric field fluctuations, or charge noise. Limiting the consequence of this noise is critical to attaining performance of exchange-based qubits adequate for quantum information processing.Charge noise in semiconductor quantum dots may originate from a variety of sources including electric defects at interfaces and in dielectrics [14]. These defects typically result in electric fields that exhibit an approximate 1=f noise spectral density. Conventional routes for reducing charge noise include improving materials and interfaces [15] and dynamical decoupling [16][17][18][19]. In this Letter, rather than addressing the microscopic origins or detailed spectrum of charge noise, we introduce a "symmetric" mode of operation where the exchange interaction is less susceptible to that noise. This is done by biasing the device to a regime where the strength of the exchange interaction is first-order insensitive to dot chemical potential fluctuations but is still controllable by modulating the interdot tunnel barrier. This dramatically reduces the effects of charge noise.The principle of symmetric operation can be understood by treating charge noise as equivalent to voltage fluctuations on confinement gates. This approximation is valid when materi...
We improve the quality of quantum circuits on superconducting quantum computing systems, as measured by the quantum volume (QV), with a combination of dynamical decoupling, compiler optimizations, shorter two-qubit gates, and excited state promoted readout. This result shows that the path to larger QV systems requires the simultaneous increase of coherence, control gate fidelities, measurement fidelities, and smarter software which takes into account hardware details, thereby demonstrating the need to continue to co-design the software and hardware stack for the foreseeable future.
We describe a microwave photon counter based on the current-biased Josephson junction. The junction is tuned to absorb single microwave photons from the incident field, after which it tunnels into a classically observable voltage state. Using two such detectors, we have performed a microwave version of the Hanbury Brown-Twiss experiment at 4 GHz and demonstrated a clear signature of photon bunching for a thermal source. The design is readily scalable to tens of parallelized junctions, a configuration that would allow number-resolved counting of microwave photons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.