Research on action simulation identifies brain areas that are active while imagining or performing simple overlearned actions. Are areas engaged during imagined movement sensitive to the amount of actual physical practice? In the present study, participants were expert dancers who learned and rehearsed novel, complex whole-body dance sequences 5 h a week across 5 weeks. Brain activity was recorded weekly by fMRI as dancers observed and imagined performing different movement sequences. Half these sequences were rehearsed and half were unpracticed control movements. After each trial, participants rated how well they could perform the movement. We hypothesized that activity in premotor areas would increase as participants observed and simulated movements that they had learnt outside the scanner. Dancers' ratings of their ability to perform rehearsed sequences, but not the control sequences, increased with training. When dancers observed and simulated another dancer's movements, brain regions classically associated with both action simulation and action observation were active, including inferior parietal lobule, cingulate and supplementary motor areas, ventral premotor cortex, superior temporal sulcus and primary motor cortex. Critically, inferior parietal lobule and ventral premotor activity was modulated as a function of dancers' ratings of their own ability to perform the observed movements and their motor experience. These data demonstrate that a complex motor resonance can be built de novo over 5 weeks of rehearsal. Furthermore, activity in premotor and parietal areas during action simulation is enhanced by the ability to execute a learned action irrespective of stimulus familiarity or semantic label.
Human motor skills can be acquired by observation without the benefit of immediate physical practice. The current study tested if physical rehearsal and observational learning share common neural substrates within an action observation network (AON) including premotor and inferior parietal regions, that is, areas activated both for execution and observation of similar actions. Participants trained for 5 days on dance sequences set to music videos. Each day they physically rehearsed one set of dance sequences ("danced"), and passively watched a different set of sequences ("watched"). Functional magnetic resonance imaging was obtained prior to and immediately following the 5 days of training. After training, a subset of the AON showed a degree of common activity for observational and physical learning. Activity in these premotor and parietal regions was sustained during observation of sequences that were danced or watched, but declined for unfamiliar sequences relative to the pretraining scan session. These imaging data demonstrate the emergence of action resonance processes in the human brain based on observational learning without physical practice and identify commonalities in the neural substrates for physical and observational learning.
In response to recommendations to redefine statistical significance to p ≤ .005, we propose that researchers should transparently report and justify all choices they make when designing a study, including the alpha level.
Dance is a rich source of material for researchers interested in the integration of movement and cognition. The multiple aspects of embodied cognition involved in performing and perceiving dance have inspired scientists to use dance as a means for studying motor control, expertise, and action-perception links. The aim of this review is to present basic research on cognitive and neural processes implicated in the execution, expression, and observation of dance, and to bring into relief contemporary issues and open research questions. The review addresses six topics: 1) dancers' exemplary motor control, in terms of postural control, equilibrium maintenance, and stabilization; 2) how dancers' timing and on-line synchronization are influenced by attention demands and motor experience; 3) the critical roles played by sequence learning and memory; 4) how dancers make strategic use of visual and motor imagery; 5) the insights into the neural coupling between action and perception yielded through exploration of the brain architecture mediating dance observation; and 6) a neuroesthetics perspective that sheds new light on the way audiences perceive and evaluate dance expression. Current and emerging issues are presented regarding future directions that will facilitate the ongoing dialog between science and dance
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.