Classifying the biological traits of organisms can test conceptual frameworks of life-history strategies and allow for predictions of how different species may respond to environmental disturbances. We apply a trait-based classification approach to a complex and threatened group of species, scleractinian corals. Using hierarchical clustering and random forests analyses, we identify up to four life-history strategies that appear globally consistent across 143 species of reef corals: competitive, weedy, stress-tolerant and generalist taxa, which are primarily separated by colony morphology, growth rate and reproductive mode. Documented shifts towards stress-tolerant, generalist and weedy species in coral reef communities are consistent with the expected responses of these life-history strategies. Our quantitative trait-based approach to classifying life-history strategies is objective, applicable to any taxa and a powerful tool that can be used to evaluate theories of community ecology and predict the impact of environmental and anthropogenic stressors on species assemblages.
There is increasing concern that multiple drivers of ecological change will interact synergistically to accelerate biodiversity loss. However, the prevalence and magnitude of these interactions remain one of the largest uncertainties in projections of future ecological change. We address this uncertainty by performing a meta-analysis of 112 published factorial experiments that evaluated the impacts of multiple stressors on animal mortality in freshwater, marine and terrestrial communities. We found that, on average, mortalities from the combined action of two stressors were not synergistic and this result was consistent across studies investigating different stressors, study organisms and life-history stages. Furthermore, only one-third of relevant experiments displayed truly synergistic effects, which does not support the prevailing ecological paradigm that synergies are rampant. However, in more than three-quarters of relevant experiments, the outcome of multiple stressor interactions was non-additive (i.e. synergies or antagonisms), suggesting that ecological surprises may be more common than simple additive effects.
Interactions between multiple ecosystem stressors are expected to jeopardize biological processes, functions and biodiversity. The scientific community has declared stressor interactions-notably synergies-a key issue for conservation and management. Here, we review ecological literature over the past four decades to evaluate trends in the reporting of ecological interactions (synergies, antagonisms and additive effects) and highlight the implications and importance to conservation. Despite increasing popularity, and ever-finer terminologies, we find that synergies are (still) not the most prevalent type of interaction, and that conservation practitioners need to appreciate and manage for all interaction outcomes, including antagonistic and additive effects. However, it will not be possible to identify the effect of every interaction on every organism's physiology and every ecosystem function because the number of stressors, and their potential interactions, are growing rapidly. Predicting the type of interactions may be possible in the near-future, using meta-analyses, conservation-oriented experiments and adaptive monitoring. Pending a general framework for predicting interactions, conservation management should enact interventions that are robust to uncertainty in interaction type and that continue to bolster biological resilience in a stressful world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.