Graph theory is a body of mathematics dealing with problems of connectivity, flow, and routing in networks ranging from social groups to computer networks. Recently, network applications have erupted in many fields, and graph models are now being applied in landscape ecology and conservation biology, particularly for applications couched in metapopulation theory. In these applications, graph nodes represent habitat patches or local populations and links indicate functional connections among populations (i.e. via dispersal). Graphs are models of more complicated real systems, and so it is appropriate to review these applications from the perspective of modelling in general. Here we review recent applications of network theory to habitat patches in landscape mosaics. We consider (1) the conceptual model underlying these applications; (2) formalization and implementation of the graph model; (3) model parameterization; (4) model testing, insights, and predictions available through graph analyses; and (5) potential implications for conservation biology and related applications. In general, and for a variety of ecological systems, we find the graph model a remarkably robust framework for applications concerned with habitat connectivity. We close with suggestions for further work on the parameterization and validation of graph models, and point to some promising analytic insights. Graphs are models of landscapes -that is, simplifications of a more complicated reality -and so it is appropriate to consider the application of these models in the same way we might evaluate other models used in ecology. This invites a series of very pragmatic questions: What is the underlying conceptual model of the system? How might we formalize and implement (codify) this conceptual model? How will the model be parameterized? Which parameters are most sensitive, most uncertain? What insights might be garnered from a formal analysis of the model? Can the model be extended to applications beyond those used to build it initially, and how might these extensions be validated with independent data? Importantly, can graph models provide predictions about landscapes that are not available from other models we already use?Here we review recent applications of graph theory to habitat mosaics, focusing on applications in landscape
Connectivity of habitat patches is thought to be important for movement of genes, individuals, populations, and species over multiple temporal and spatial scales. We used graph theory to characterize multiple aspects of landscape connectivity in a habitat network in the North Carolina Piedmont (U.S.A)..
Spatially explicit population models (SEPMs) are often considered the best way to predict and manage species distributions in spatially heterogeneous landscapes. However, they are computationally intensive and require extensive knowledge of species' biology and behavior, limiting their application in many cases. An alternative to SEPMs is graph theory, which has minimal data requirements and efficient algorithms. Although only recently introduced to landscape ecology, graph theory is well suited to ecological applications concerned with connectivity or movement. This paper compares the performance of graph theory to a SEPM in selecting important habitat patches for Wood Thrush (Hylocichla mustelina) conservation. We use both models to identify habitat patches that act as population sources and persistent patches and also use graph theory to identify patches that act as stepping stones for dispersal. Correlations of patch rankings were very high between the two models. In addition, graph theory offers the ability to identify patches that are very important to habitat connectivity and thus long-term population persistence across the landscape. We show that graph theory makes very similar predictions in most cases and in other cases offers insight not available from the SEPM, and we conclude that graph theory is a suitable and possibly preferable alternative to SEPMs for species conservation in heterogeneous landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.