This paper presents advancements in the design of a portable, soft robotic glove for individuals with functional grasp pathologies. The robotic glove leverages soft material actuator technology to safely distribute forces along the length of the finger and provide active flexion and passive extension. These actuators consist of molded elastomeric bladders with anisotropic fiber reinforcements that produce specific bending, twisting, and extending trajectories upon fluid pressurization. In particular, we present a method for customizing a soft actuator to a wearer's biomechanics and demonstrate in a motion capture system that the ranges of motion (ROM) of the two are nearly equivalent. The active ROM of the glove is further evaluated using the Kapandji test. Lastly, in a case study, we present preliminary results of a patient with very weak hand strength performing a timed Box-and-Block test with and without the soft robotic glove.
To investigate whether valid respiratory data can be extracted from the pulse oximeter plethysmographic (pleth) trace in healthy newborn infants, pleth data were collected from the foot, and respiratory airflow was simultaneously measured using a facemask. The pleth waveform was analysed using fast Fourier transform (FFT), low-pass filtering (LPF), and by plotting the peak-to-peak amplitude variation (PtP). Using FFT in 14 term infants, the median (range) respiratory rate from the pleth signal was 43 (30-65) breaths/min, and from the flow signal it was 44 (30-67) breaths/min (median difference 0.01 breaths/min, p>0.05). Both LPF and PtP analysis yielded waveforms with a frequency similar to the respiratory rate. Respiratory information, including respiratory rate and a respiratory-like waveform, can reliably be extracted from the pleth trace of a standard pulse oximeter in newborn infants. Such analysis may be clinically useful for non-invasive assessment of respiratory problems in infants and young children.
A system for co-cultivation of anaerobic fungi with anaerobic bacteria was established based on lactate cross-feeding to produce butyrate and butanol from plant biomass. Several co-culture formulations were assembled that consisted of anaerobic fungi (Anaeromyces robustus, Neocallimastix californiae, or Caecomyces churrovis) with the bacterium Clostridium acetobutylicum. Co-cultures were grown simultaneously (e.g. ‘one pot’), and compared to cultures where bacteria were cultured in fungal hydrolysate sequentially. Fungal hydrolysis of lignocellulose resulted in 7–11 mM amounts of glucose and xylose, as well as acetate, formate, ethanol and lactate to support clostridial growth. Under these conditions, one-stage simultaneous co-culture of anaerobic fungi with C. acetobutylicum promoted production of butyrate up to 30 mM. Alternatively, two-stage growth slightly promoted solventogenesis and elevated butanol levels (∼4–9 mM). Transcriptional regulation in the two-stage growth condition indicated that this cultivation method may decrease the time required to reach solventogenesis and induce expression of cellulose-degrading genes in C. acetobutylicum due to relieved carbon-catabolite repression. Overall, this study demonstrates a proof of concept for bio-butanol and bio-butyrate production from lignocellulose using an anaerobic fungal-bacterial co-culture system.
Clostridioides difficile infection (CDI) remains a significant healthcare burden. Non-toxigenic C. difficile (NTCD) strains have shown a benefit in preventing porcine enteritis and in human recurrent CDI. In this study, we evaluated the efficacy of metronidazole-resistant NTCD-E4 in preventing CDI facilitated by a range of antimicrobials in an in vitro human gut model. NTCD-E4 spores (at a dose of 107) were instilled 7 days before a clinical ribotype (RT) 027 (at the same dose) strain (210). In separate experiments, four different antimicrobials were used to perturb gut microbiotas; bacterial populations and cytotoxin production were determined using viable counting and Vero cell cytotoxicity, respectively. RT027 and NTCD-E4 proliferated in the in vitro model when inoculated singly, with RT027 demonstrating high-level cytotoxin (3-5-log10-relative units) production. In experiments where the gut model was pre-inoculated with NTCD-E4, RT027 was remained quiescent and failed to produce cytotoxins. NTCD-E4 showed mutations in hsmA and a gene homologous to CD196-1331, previously linked to medium-dependent metronidazole resistance, but lacked other metronidazole resistance determinants. This study showed that RT027 was unable to elicit simulated infection in the presence of NTCD-E4 following stimulation by four different antimicrobials. These data complement animal and clinical studies in suggesting NTCD offer prophylactic potential in the management of human CDI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.