In neurons, long-distance communication between axon terminals and cell bodies is a critical determinant in establishing and maintaining neural circuits. Neurotrophins are soluble factors secreted by post-synaptic target tissues that retrogradely control axon and dendrite growth, survival, and synaptogenesis of innervating neurons. Neurotrophins bind Trk receptor tyrosine kinases in axon terminals to promote endocytosis of ligand-bound phosphorylated receptors into signaling endosomes. Trk-harboring endosomes function locally in axons to acutely promote growth events, and can also be retrogradely transported long-distances to remote cell bodies and dendrites to stimulate cytoplasmic and transcriptional signaling necessary for neuron survival, morphogenesis, and maturation. Neuronal responsiveness to target-derived neurotrophins also requires the precise axonal targeting of newly synthesized Trk receptors. Recent studies suggest that anterograde delivery of Trk receptors is regulated by retrograde neurotrophin signaling. In this review, we summarize current knowledge on the functions and mechanisms of retrograde trafficking of Trk signaling endosomes, and highlight recent discoveries on the forward trafficking of nascent receptors.
Summary
Neurons are extraordinarily large and highly polarized cells that require rapid and efficient communication between cell bodies and axons over long distances. In peripheral neurons, transcripts are transported along axons to growth cones, where they are rapidly translated in response to extrinsic signals. While studying
Tp53inp2
, a transcript highly expressed and enriched in sympathetic neuron axons, we unexpectedly discovered that
Tp53inp2
is not translated. Instead, the transcript supports axon growth in a coding-independent manner. Increasing evidence indicates that mRNAs may function independently of their coding capacity; for example, acting as a scaffold for functionally related proteins. The
Tp53inp2
transcript interacts with the nerve growth factor (NGF) receptor TrkA, regulating TrkA endocytosis and signaling. Deletion of
Tp53inp2
inhibits axon growth
in vivo
, and the defects are rescued by a non-translatable form of the transcript.
Tp53inp2
is an atypical mRNA that regulates axon growth by enhancing NGF-TrkA signaling in a translation-independent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.