Magnetic resonance-guided radiotherapy technology is relatively new and commissioning publications, quality assurance (QA) protocols and commercial products are limited. This work provides guidance for implementation measurements that may be performed on the Elekta Unity MR-Linac (Elekta, Stockholm, Sweden). Adaptations of vendor supplied phantoms facilitated determination of gantry angle accuracy and linac isocentre, whereas in-house developed phantoms were used for end-to-end testing and anterior coil attenuation measurements. Third-party devices were used for measuring beam quality, reference dosimetry and during treatment plan commissioning; however, due to several challenges, variations on standard techniques were required. Gantry angle accuracy was within 0.1°, confirmed with pixel intensity profiles, and MV isocentre diameter was < 0.5 mm. Anterior coil attenuation was approximately 0.6%. Beam quality as determined by TPR20,10 was 0.705 ± 0.001, in agreement with treatment planning system (TPS) calculations, and gamma comparison against the TPS for a 22.0 × 22.0 cm2 field was above 95.0% (2.0%, 2.0 mm). Machine output was 1.000 ± 0.002 Gy per 100 MU, depth 5.0 cm. During treatment plan commissioning, sub-standard results indicated issues with machine behaviour. Once rectified, gamma comparisons were above 95.0% (2.0%, 2.0 mm). Centres which may not have access to specialized equipment can use in-house developed phantoms, or adapt those supplied by the vendor, to perform commissioning work and confirm operation of the MRL within published tolerances. The plan QA techniques used in this work can highlight issues with machine behaviour when appropriate gamma criteria are set.
Introduction
Optical three‐dimensional scanning devices can produce geometrically accurate, high‐resolution models of patients suitable for clinical use. This article describes the use of a metrology‐grade structured light scanner for the design and production of radiotherapy medical devices and synthetic water‐equivalent computer tomography images.
Methods
Following commissioning of the device by scanning objects of known properties, 173 scans were performed on 26 volunteers, with observations of subjects and operators collected.
Results
The fit of devices produced using these scans was assessed, and a workflow for the design of complex devices using a treatment planning system was identified.
Conclusions
Recommendations are provided on the use of the device within a radiation oncology department.
3D printing in modern radiotherapy provides creative autonomy which can be a valuable tool for use in brachytherapy source calibration. Radiotherapy centres may verify their brachytherapy source strength with a calibrated Farmer chamber. For this purpose, a jig was designed, 3D printed and commissioned for in-air source strength calibration. Measurements on four afterloaders with varied equipment and environments were completed. A full uncertainty budget was developed and measurements with the in-air jig were consistently within 3% of the certificate source strength. By creating a jig that is able to be customised to multiple catheter sizes and cylindrical chamber designs, centres can be provided with the option of independently checking their source strength with ease and for little cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.