We live in an age of rapidly advancing genetic research. This research is generating new knowledge that has implications for personal health and well-being. The present study assessed the level of genetic knowledge and personal engagement with genetics in a large sample (N = 5404) of participants. Participants received secondary education in 78 countries, with the largest samples from Russia, the UK and the USA. The results showed significant group differences in genetic knowledge between different countries, professions, education levels and religious affiliations. Overall, genetic knowledge was poor. The questions were designed to assess basic genetic literacy. However, only 1.2% of participants answered all 18 questions correctly, and the average score was 65.5%. Genetic knowledge was related to peoples' attitudes towards genetics. For example, those with greater genetic knowledge were on average more willing to use genetic knowledge for their personal health management. Based on the results, the paper proposes a number of immediate steps that societies can implement to empower the public to benefit from ever-advancing genetic knowledge.
On average, students attending selective schools outperform their non-selective counterparts in national exams. These differences are often attributed to value added by the school, as well as factors schools use to select pupils, including ability, achievement and, in cases where schools charge tuition fees or are located in affluent areas, socioeconomic status. However, the possible role of DNA differences between students of different schools types has not yet been considered. We used a UK-representative sample of 4814 genotyped students to investigate exam performance at age 16 and genetic differences between students in three school types: state-funded, non-selective schools (‘non-selective’), state-funded, selective schools (‘grammar’) and private schools, which are selective (‘private’). We created a genome-wide polygenic score (GPS) derived from a genome-wide association study of years of education (EduYears). We found substantial mean genetic differences between students of different school types: students in non-selective schools had lower EduYears GPS compared to those in grammar (d = 0.41) and private schools (d = 0.37). Three times as many students in the top EduYears GPS decile went to a selective school compared to the bottom decile. These results were mirrored in the exam differences between school types. However, once we controlled for factors involved in pupil selection, there were no significant genetic differences between school types, and the variance in exam scores at age 16 explained by school type dropped from 7% to <1%. These results show that genetic and exam differences between school types are primarily due to the heritable characteristics involved in pupil admission.
The two best predictors of children's educational achievement available from birth are parents’ socioeconomic status (SES) and, recently, children's inherited DNA differences that can be aggregated in genome‐wide polygenic scores (GPS). Here, we chart for the first time the developmental interplay between these two predictors of educational achievement at ages 7, 11, 14 and 16 in a sample of almost 5,000 UK school children. We show that the prediction of educational achievement from both GPS and SES increases steadily throughout the school years. Using latent growth curve models, we find that GPS and SES not only predict educational achievement in the first grade but they also account for systematic changes in achievement across the school years. At the end of compulsory education at age 16, GPS and SES, respectively, predict 14% and 23% of the variance of educational achievement. Analyses of the extremes of GPS and SES highlight their influence and interplay: In children who have high GPS and come from high SES families, 77% go to university, whereas 21% of children with low GPS and from low SES backgrounds attend university. We find that the associations of GPS and SES with educational achievement are primarily additive, suggesting that their joint influence is particularly dramatic for children at the extreme ends of the distribution.
The two best predictors of children’s educational achievement available from birth are parents’ socioeconomic status (SES) and, recently, children’s inherited DNA differences that can be aggregated in genome-wide polygenic scores (GPS). Here we chart for the first time the developmental interplay between these two predictors of educational achievement at ages 7, 11, 14 and 16 in a sample of almost 5,000 UK school children. We show that the prediction of educational achievement from both GPS and SES increases steadily throughout the school years. Using latent growth curve models, we find that GPS and SES not only predict educational achievement in the first grade but they also account for systematic changes in achievement across the school years. At the end of compulsory education at age 16, GPS and SES respectively predict 14% and 23% of the variance of educational achievement; controlling for genetic influence on SES reduces its predictive power to 16%. Analyses of the extremes of GPS and SES highlight their influence and interplay: In children who have high GPS and come from high SES families, 77% go to university, whereas 21% of children with low GPS and from low SES backgrounds attend university. We find that the effects of GPS and SES are primarily additive, suggesting that their joint impact is particularly dramatic for children at the extreme ends of the distribution.
Genome-wide polygenic scores (GPS) can be used to predict individual genetic risk and resilience. For example, a GPS for years of education (EduYears) explains substantial variance in cognitive traits such as general cognitive ability and educational achievement. Personality traits are also known to contribute to individual differences in educational achievement. However, the association between EduYears GPS and personality traits remains largely unexplored. Here, we test the relation between GPS for EduYears, neuroticism, and well-being, and 6 personality and motivation domains: Academic Motivation, Extraversion, Openness, Conscientiousness, Neuroticism, and Agreeableness. The sample was drawn from a U.K.-representative sample of up to 8,322 individuals assessed at age 16. We find that EduYears GPS was positively associated with Openness, Conscientiousness, Agreeableness, and Academic Motivation, predicting between 0.6% and 3% of the variance. In addition, we find that EduYears GPS explains between 8% and 16% of the association between personality domains and educational achievement at the end of compulsory education. In contrast, both the neuroticism and well-being GPS significantly accounted for between 0.3% and 0.7% of the variance in a subset of personality domains. Furthermore, they did not significantly account for any of the covariance between the personality domains and achievement, with the exception of the neuroticism GPS explaining 5% of the covariance between Neuroticism and achievement. These results demonstrate that the genetic effects of educational attainment relate to personality traits, highlighting the multifaceted nature of EduYears GPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.