Community–academic partnerships (CAPs) improve the research process, outcomes, and yield benefits for the community and researchers. This exploratory study examined factors important in community stakeholders’ decision to participate in CAPs. Autism spectrum disorder (ASD) community stakeholders, previously contacted to participate in a CAP (n = 18), completed the 15-item Decision to Participate Questionnaire (DPQ). The DPQ assessed reasons for participating or declining participation in the ASD CAP. CAP participants rated networking with other providers, fit of collaboration with agency philosophy, and opportunity for future training/consultations as factors more important in their decision to participate in the ASD CAP than nonparticipants. Nonparticipants reported the number of requests to participate in research as more important in their decision to decline participation than participants. Findings reveal important factors in community stakeholders’ decision to participate in CAPs that may provide guidance on increasing community engagement in CAPs and help close the science-to-service gap.
White sharks (Carcharodon carcharias) are the largest shark species to display regional endothermy. This capability likely facilitates exploitation of resources beyond thermal tolerance thresholds of potential sympatric competitors as well as sustained elevated swim speeds, but results in increased metabolic costs of adults, which has been documented in different studies. Little, however, is known of the metabolic requirements in free-swimming juveniles of the species, due to their large size at birth and challenges in measuring their oxygen consumption rates in captivity. We used trilateration of positional data from high resolution acoustic-telemetry to derive swim speeds from speed-over-ground calculations for eighteen free-swimming individual juvenile white sharks, and subsequently estimate associated mass-specific oxygen consumption rates as a proxy for field routine metabolic rates. Resulting estimates of mass-specific field routine metabolic rates (368 mg O2 kg−1 h−1 ± 27 mg O2 kg−1 h−1 [mean ± S.D.]) are markedly lower than those reported in sub-adult and adult white sharks by previous studies. We argue that median cruising speeds while aggregating at nearshore nursery habitats (0.6 m s-1 [mean ± S.E = 0.59 ± 0.001], 0.3 TL s-1) are likely a feature of behavioral strategies designed to optimize bioenergetic efficiency, by modulating activity rates in response to environmental temperature profiles to buffer heat loss and maintain homeostasis. Such behavioral strategies more closely resemble those exhibited in ectotherm sharks, than mature conspecifics.
While the function of migration varies among species, environmental temperature is known to be one of the most important abiotic variables that drive animal migration; however, quantifying the thresholds and timing of the cues that influence a mass emigration is difficult, often due to lack of monitoring resolution, particularly for large, highly mobile species. We used acoustic telemetry tracking and high-resolution water temperature data over a relatively large spatial scale (5.5 km2) to identify and quantify a thermal threshold for mass emigration of juvenile white sharks. Sixteen tagged sharks were observed to initiate a search for warmer water within 10–12 hours of an upwelling event where water temperatures dropped below 14 °C. Eleven sharks traveled ~ 35 km away where they experienced similar cold temperatures before returning to the aggregation site within 24 hours. Five days following the upwelling event, most sharks emigrated from the site for the season. Quantifying movement patterns across different spatial and temporal scales is necessary to understand cues and thresholds influencing animal migration, which may be greatly affected by climate anomalies and climate change, resulting in potential impacts on the dynamics of local prey species, management, and conservation policy and practice.
Juvenile white sharks (Carcharodon carcharias) typically aggregate along coastal beaches; however, high levels of recruitment and shifting oceanographic conditions may be causing habitat use expansions. Telemetry data indicate increased habitat use at the Northern Channel Islands (California, USA) by juvenile white shark that may be in response to increased population density at aggregation locations, or anomalous oceanographic events that impact habitat use or expand available habitat. Findings illustrate the need for long‐term movement monitoring and understanding drivers of habitat use shifts and expansion to improve ecosystem management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.